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For a given K, C(K) is the Banach space of all continuous real-valued
functions f : K — R, with the usual norm: ||g|| = sup,cx |f(x)|.

A linear operator T : C(K) — C(L) is an isomorphic embedding if there
are M, m > 0 such that for every g € C(K)

m-|lg]| <[ITgll <M-|lgl]-

If M is the least constant with such a property then M = || T||, likewise
m = 1/||T~}|. Isomorphic embedding T : C(K) — C(L) which is onto is
called an isomorphism; we then write C(K) ~ C(L).
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Theorem

Under CH, for every K of weight < ¢, C(K) embeds isometrically into
C(w*) (which itself is isometric to I,/ co)).

Dow & Hart: Consistently, the measure algebra does not embed into
P(w)/fin, so its Stone space S is not an image of w*.
On the other hand, C(S) = Ly[0,1] ~ looc = C(Sw) embeds into C(w*).

Todorcevi¢ (2011) proved that, consistently, there is a “small” compact
K such that C(K) does not embed into C(w*), cf. Krupski-Marciszewski
(2012).
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Some ancient problems

Problem
For which spaces K, C(K) ~ C(K+1)7? J

Here K + 1 denotes K with one additional isolated point.

This is so if K contains a nontrivial converging sequence:

C(K) =P X~cgPXPBR~ C(K+1).

Note that C(fw) ~ C(fw + 1) (because C(Sw) = I ) though Sw has no
converging sequences.

Problem

For which spaces K there is a totally disconnected L such that
C(K)~C(L) ?
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e Koszmider (2004): There is a compact connected space K such that
every bounded operator T : C(K) — C(K) is of the form
T=g-1+S5, where S: C(K) — C(K) is weakly compact. cf.
GP(2004).

Consequently, C(K) # C(K + 1), and C(K) is not isomorphic to
C(L) with L totally disconnected; .

o Auviles-Koszmider (2011): There is a space K which is not
Radon-Nikodym compact but is a continuous image of an RN
compactum; it follows that C(K) is not isomorphic to C(L) with L
totally disconnected.

Problem (Argyros & Arvanitakis)

Let K be a compact convex subset of some Banach space which is not
metrizable. Can C(K) be isomorphic to C(L), where L is totally
disconnected?
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@ Suppose that C(K) and C(L) are isomorphic. How K is topologically
related to L?

@ Suppose that C(K) can be embedded into C(L), where L has some
property P. Does K has property P ?
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An embedding T : C(K) — C(L) is positive if C(K) > g > 0 implies
Tg > 0.

Theorem
Let T : C(K) — C(L) be a positive isomorphic embedding. Then there is
p € N and a finite valued mapping ¢ : L — [K]|SP which is onto

(Uyer ¢(y) = K) and upper semicontinuous (i.e. {y : p(y) C U} C Lis
open for every open U C K).

Corollary

If C(K) can be embedded into C(L) by a positive operator then
7(K) < 7(L) and if L is Frechet (or sequentially compact) then K is
Frechet (sequentially compact).

Remark: p is the integer part of || T|| - || T71||.
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Theorem

Suppose that there is an operator T : C(K) — C(L) such that T is either
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Theorem

Suppose that there is an operator T : C(K) — C(L) such that T is either
positive isomorphic embedding or an arbitrary isomorphism.
Then there is nonempty open U C K such that U is a continuous image of

some compact subspace of L. In fact the family of such U forms a m-base
in K.

Corollary

If C[0,1]" ~ C(L) then L maps continuously onto [0, 1]".
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K is Corson compact if K — X (R") for some x, where

YRY) ={xeR": {a:xq # 0} <w}.

This is equivalent to saying that C(K) contains a point-countable family
separating points of K.
Problem

Suppose that C(K) ~ C(L), where L is Corson compact. Must K be
Corson compact?

The answer is 'yes' under MA(w1).

Theorem

If C(K) ~ C(L) where L is Corson compact then K has a m — base of sets
having Corson compact closures. In particular, K is itself Corson compact
whenever K is homogeneous.
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If 1 is a finite regular Borel measure on K then u is a continuous
functional C(K): u(g) = [ g du for p € C(K).

In fact, C(K)* can be identified with the space of all signed regular
measures of finite variation (i.e. is of the form uy — p2, p1, pu2 > 0).

Let T : C(K) — C(L) be a linear operator.Given y € L, let §, € C(L)* be
the Dirac measure.

We can define v, € C(K)* by v,(g) = Tg(y) for g € C(K)(v, = T*6,).

Lemma
Let T : C(K) — C(L) be an embedding such that for g € C(K)

m-|lg|| < || Tgll < [gll-

Then for every x € K and m’ < m there is y € L such that v, ({x}) > m'.
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An application

Theorem (W. Marciszewski, GP (2010))

Suppose that C(K) embeds into C(L), where L is Corson compact. Then
K is Corson compact provided has some measure-theoretic property (which
holds true for all linearly ordered compacta and Rosenthal compacta).
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Suppose that C(K) embeds into C(L), where L is Corson compact. Then
K is Corson compact provided has some measure-theoretic property (which
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