On isomorphisms and embeddings of $C(K)$ spaces

Grzegorz Plebanek

Instytut Matematyczny, Uniwersytet Wrocławski

Hejnice, January/February 2013
Preliminaries

\begin{equation}
\text{and } L \text{ always stand for compact Hausdorff spaces.}
\end{equation}

For a given \(K \), \(C(K) \) is the Banach space of all continuous real-valued functions \(f : K \to \mathbb{R} \), with the usual norm:

\[||g|| = \sup_{x \in K} |f(x)|. \]

A linear operator \(T : C(K) \to C(L) \) is an isomorphic embedding if there are \(M, m > 0 \) such that for every \(g \in C(K) \)

\[m \cdot ||g|| \leq ||Tg|| \leq M \cdot ||g||. \]

If \(M \) is the least constant with such a property then \(M = ||T|| \), likewise \(m = \frac{1}{||T^{-1}||} \).

Isomorphic embedding \(T : C(K) \to C(L) \) which is onto is called an isomorphism; we then write \(C(K) \sim C(L) \).
Preliminaries

K and L always stand for compact Hausdorff spaces.
K and L always stand for compact Hausdorff spaces.
For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$,
K and L always stand for compact Hausdorff spaces. For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $\|g\| = \sup_{x \in K} |f(x)|$.

A linear operator $T : C(K) \to C(L)$ is an isomorphic embedding if there are $M, m > 0$ such that for every $g \in C(K)$, $m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|$. If M is the least constant with such a property then $M = \|T\|$, likewise $m = \frac{1}{\|T^{-1}\|}$. Isomorphic embedding $T : C(K) \to C(L)$ which is onto is called an isomorphism; we then write $C(K) \cong C(L)$.

G. Plebanek (IM UW)
K and L always stand for compact Hausdorff spaces. For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $\|g\| = \sup_{x \in K} |f(x)|$.

A linear operator $T : C(K) \to C(L)$ is an **isomorphic embedding** if there are $M, m > 0$ such that for every $g \in C(K)$

$$m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|.$$
K and L always stand for compact Hausdorff spaces.
For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f: K \to \mathbb{R}$, with the usual norm: $\|g\| = \sup_{x \in K} |f(x)|$.

A linear operator $T: C(K) \to C(L)$ is an **isomorphic embedding** if there are $M, m > 0$ such that for every $g \in C(K)$

\[
m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|.
\]

If M is the least constant with such a property then $M = \|T\|$,
K and L always stand for compact Hausdorff spaces. For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $\|g\| = \sup_{x \in K} |f(x)|$.

A linear operator $T : C(K) \to C(L)$ is an **isomorphic embedding** if there are $M, m > 0$ such that for every $g \in C(K)$

$$m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|.$$

If M is the least constant with such a property then $M = \|T\|$, likewise $m = 1/\|T^{-1}\|$.
\(K \) and \(L \) always stand for compact Hausdorff spaces.
For a given \(K \), \(C(K) \) is the Banach space of all continuous real-valued functions \(f : K \to \mathbb{R} \), with the usual norm: \(\|g\| = \sup_{x \in K} |f(x)| \).
A linear operator \(T : C(K) \to C(L) \) is an isomorphic embedding if there are \(M, m > 0 \) such that for every \(g \in C(K) \)

\[
m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|.
\]

If \(M \) is the least constant with such a property then \(M = \|T\| \), likewise \(m = 1/\|T^{-1}\| \).
K and L always stand for compact Hausdorff spaces.
For a given K, $C(K)$ is the Banach space of all continuous real-valued functions $f : K \to \mathbb{R}$, with the usual norm: $\|g\| = \sup_{x \in K} |f(x)|$.
A linear operator $T : C(K) \to C(L)$ is an \textbf{isomorphic embedding} if there are $M, m > 0$ such that for every $g \in C(K)$

$$m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|.$$

If M is the least constant with such a property then $M = \|T\|$, likewise $m = 1/\|T^{-1}\|$. Isomorphic embedding $T : C(K) \to C(L)$ which is onto is called an \textbf{isomorphism};
K and L always stand for compact Hausdorff spaces. For a given K, C(K) is the Banach space of all continuous real-valued functions f : K \to \mathbb{R}, with the usual norm: \|g\| = \sup_{x \in K} |f(x)|.
A linear operator T : C(K) \to C(L) is an **isomorphic embedding** if there are M, m > 0 such that for every g ∈ C(K)

\[m \cdot \|g\| \leq \|Tg\| \leq M \cdot \|g\|. \]

If M is the least constant with such a property then M = \| T \|, likewise m = 1/\| T^{-1} \|. Isomorphic embedding T : C(K) \to C(L) which is onto is called an **isomorphism**; we then write C(K) ∼ C(L).
Theorem

Under CH, for every K of weight $\leq \aleph_1$, $C(K)$ embeds isometrically into $C(\omega^\ast)$ (which itself is isometric to l_∞/ℓ_0).

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/\text{fin}$, so its Stone space S is not an image of ω^\ast.

On the other hand, $C(S) \equiv L_\infty[0,1] \sim l_\infty \equiv C(\beta\omega)$ embeds into $C(\omega^\ast)$.

Todorˇ cević (2011) proved that, consistently, there is a "small" compact K such that $C(K)$ does not embed into $C(\omega^\ast)$, cf. Krupski-Marciszewski (2012).
Theorem

Under CH, for every K of weight $\leq c$, $C(K)$ embeds isometrically into $C(\omega^)$ (which itself is isometric to l_∞/c_0).*
Theorem

Under CH, for every K of weight $\leq c$, $C(K)$ embeds isometrically into $C(\omega^*)$ (which itself is isometric to l_∞/c_0).

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/\text{fin}$, so its Stone space S is not an image of ω^*.
Theorem

Under CH, for every \(K \) of weight \(\leq \mathfrak{c} \), \(C(K) \) embeds isometrically into \(C(\omega^) \) (which itself is isometric to \(l_\infty/c_0 \)).*

Dow & Hart: Consistently, the measure algebra does not embed into \(P(\omega)/\text{fin} \), so its Stone space \(S \) is not an image of \(\omega^* \).

On the other hand, \(C(S) \equiv L_\infty[0, 1] \sim l_\infty \equiv C(\beta\omega) \) embeds into \(C(\omega^*) \).
C(K) spaces for nonmetrizable K

Theorem

Under CH, for every K of weight $\leq \mathfrak{c}$, $C(K)$ embeds isometrically into $C(\omega^)$ (which itself is isometric to l_∞/c_0).*

Dow & Hart: Consistently, the measure algebra does not embed into $P(\omega)/\text{fin}$, so its Stone space S is not an image of ω^*. On the other hand, $C(S) \equiv L_\infty[0,1] \sim l_\infty \equiv C(\beta\omega)$ embeds into $C(\omega^*)$.

Todorčević (2011) proved that, consistently, there is a “small” compact K such that $C(K)$ does not embed into $C(\omega^*)$, cf. Krupski-Marciszewski (2012).
Some ancient results

- **Banach-Stone:**
 \[C(K) \text{ is isometric to } C(L) \text{ then } K \cong L. \]

- **Amir, Cambern:**
 \[T : C(K) \to C(L) \text{ is an isomorphism with } ||T|| \cdot ||T^{-1}|| < 2 \text{ then } K \cong L. \]

- **Jarosz (1984):**
 \[T : C(K) \to C(L) \text{ is an embedding with } ||T|| \cdot ||T^{-1}|| < 2 \text{ then } K \text{ is a continuous image of some compact subspace of } L. \]

- **Miljutin:**
 \[K \text{ is an uncountable metric space then } C(K) \sim C([0,1]). \]
 In particular
 \[C(2^{\omega}) \sim C([0,1]); \quad C([0,1] \cup \{2\}) \sim C([0,1]). \]
Some ancient results

- **Banach-Stone**: If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.
Some ancient results

- **Banach-Stone:** If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.
- **Amir, Cambern:** If $T : C(K) \rightarrow C(L)$ is an isomorphism with $\|T\| \cdot \|T^{-1}\| < 2$ then $K \simeq L$.
Some ancient results

- **Banach-Stone:** If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.
- **Amir, Cambern:** If $T : C(K) \rightarrow C(L)$ is an isomorphism with $\|T\| \cdot \|T^{-1}\| < 2$ then $K \simeq L$.
- **Jarosz (1984):** If $T : C(K) \rightarrow C(L)$ is an embedding with $\|T\| \cdot \|T^{-1}\| < 2$ then K is a continuous image of some compact subspace of L.

G. Plebanek (IM UWr)
Some ancient results

- **Banach-Stone**: If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.

- **Amir, Cambern**: If $T : C(K) \to C(L)$ is an isomorphism with $\|T\| \cdot \|T^{-1}\| < 2$ then $K \simeq L$.

- **Jarosz (1984)**: If $T : C(K) \to C(L)$ is an embedding with $\|T\| \cdot \|T^{-1}\| < 2$ then K is a continuous image of some compact subspace of L.

- **Miljutin**: If K is an uncountable metric space then $C(K) \sim C([0,1])$.

G. Plebanek (IM UWr) Isomorphisms of $C(K)$ spaces 2013 4 / 12
Some ancient results

- **Banach–Stone:** If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.
- **Amir, Cambern:** If $T : C(K) \to C(L)$ is an isomorphism with $\|T\| \cdot \|T^{-1}\| < 2$ then $K \simeq L$.
- **Jarosz (1984):** If $T : C(K) \to C(L)$ is an embedding with $\|T\| \cdot \|T^{-1}\| < 2$ then K is a continuous image of some compact subspace of L.
- **Miljutin:** If K is an uncountable metric space then $C(K) \sim C([0, 1])$.

In particular $C(2^\omega) \sim C([0, 1])$; $C([0, 1] \cup \{2\}) \sim C([0, 1])$.

G. Plebanek (IM UWr)

Isomorphisms of $C(K)$ spaces
Some ancient results

- **Banach-Stone:** If $C(K)$ is isometric to $C(L)$ then $K \simeq L$.
- **Amir, Cambern:** If $T : C(K) \to C(L)$ is an isomorphism with $\| T \| \cdot \| T^{-1} \| < 2$ then $K \simeq L$.
- **Jarosz (1984):** If $T : C(K) \to C(L)$ is an embedding with $\| T \| \cdot \| T^{-1} \| < 2$ then K is a continuous image of some compact subspace of L.
- **Miljutin:** If K is an uncountable metric space then $C(K) \simeq C([0, 1])$.

In particular $C(2^\omega) \simeq C[0, 1]$.
Some ancient results

- **Banach-Stone**: If $C(K)$ is isometric to $C(L)$ then $K \sim L$.
- **Amir, Cambern**: If $T : C(K) \to C(L)$ is an isomorphism with $\|T\| \cdot \|T^{-1}\| < 2$ then $K \sim L$.
- **Jarosz (1984)**: If $T : C(K) \to C(L)$ is an embedding with $\|T\| \cdot \|T^{-1}\| < 2$ then K is a continuous image of some compact subspace of L.
- **Miljutin**: If K is an uncountable metric space then $C(K) \sim C([0, 1])$.

In particular $C(2^\omega) \sim C[0, 1]$; $C([0, 1] \cup \{2\}) \sim C[0, 1]$.
Some ancient problems

Problem
For which spaces K, $C(K) \sim C(K+1)$?

Here $K+1$ denotes K with one additional isolated point.

This is so if K contains a nontrivial converging sequence:

$$C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K+1).$$

Note that $C(\beta\omega) \sim C(\beta\omega+1)$ (because $C(\beta\omega) = l_\infty$) though $\beta\omega$ has no converging sequences.

Problem
For which spaces K there is a totally disconnected L such that $C(K) \sim C(L)$?
Some ancient problems

Problem

For which spaces K, $C(K) \sim C(K + 1)$?
Some ancient problems

Problem

For which spaces \(K \), \(C(K) \sim C(K + 1) \)?

Here \(K + 1 \) denotes \(K \) with one additional isolated point.
Problem

For which spaces K, $C(K) \sim C(K + 1)$?

Here $K + 1$ denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence:

$$C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1).$$
Problem

For which spaces K, $C(K) \sim C(K + 1)$?

Here $K + 1$ denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence:

$C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1)$.

Note that $C(\beta\omega) \sim C(\beta\omega + 1)$ (because $C(\beta\omega) = l_\infty$) though $\beta\omega$ has no converging sequences.
Some ancient problems

Problem

For which spaces K, $C(K) \sim C(K + 1)$?

Here $K + 1$ denotes K with one additional isolated point. This is so if K contains a nontrivial converging sequence:

$C(K) = c_0 \oplus X \sim c_0 \oplus X \oplus \mathbb{R} \sim C(K + 1)$.

Note that $C(\beta \omega) \sim C(\beta \omega + 1)$ (because $C(\beta \omega) = l_\infty$) though $\beta \omega$ has no converging sequences.

Problem

For which spaces K there is a totally disconnected L such that $C(K) \sim C(L)$?
Two peculiar compacta

Koszmider (2004):
There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact.

Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

Aviles-Koszmider (2011):
There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

Problem (Argyros & Arvanitakis)
Let K be a compact convex subset of some Banach space which is not metrizable. Can $C(K)$ be isomorphic to $C(L)$, where L is totally disconnected?
Two peculiar compacta

- **Koszmider (2004):** There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact.
Two peculiar compacta

- **Koszmider (2004):** There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).

Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

Problem (Argyros & Arvanitakis)
Let K be a compact convex subset of some Banach space which is not metrizable. Can $C(K)$ be isomorphic to $C(L)$, where L is totally disconnected?
Koszmider (2004): There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).
Consequently, $C(K) \not\sim C(K + 1)$.

Problem (Argyros & Arvanitakis)
Let K be a compact convex subset of some Banach space which is not metrizable. Can $C(K)$ be isomorphic to $C(L)$, where L is totally disconnected?
Koszmider (2004): There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).

Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected;
Two peculiar compacta

- **Koszmider (2004):** There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).

Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

- **Aviles-Koszmider (2011):** There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum;
Two peculiar compacta

- **Koszmider (2004):** There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).
 Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

- **Aviles-Koszmider (2011):** There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.
Two peculiar compacta

- **Koszmider (2004):** There is a compact connected space K such that every bounded operator $T : C(K) \to C(K)$ is of the form $T = g \cdot I + S$, where $S : C(K) \to C(K)$ is weakly compact. cf. GP(2004).
 Consequently, $C(K) \not\sim C(K + 1)$, and $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

- **Aviles-Koszmider (2011):** There is a space K which is not Radon-Nikodym compact but is a continuous image of an RN compactum; it follows that $C(K)$ is not isomorphic to $C(L)$ with L totally disconnected.

Problem (Argyros & Arvanitakis)

Let K be a compact convex subset of some Banach space which is not metrizable. Can $C(K)$ be isomorphic to $C(L)$, where L is totally disconnected?
Some questions

Suppose that $C(K)$ and $C(L)$ are isomorphic. How is K topologically related to L?

Suppose that $C(K)$ can be embedded into $C(L)$, where L has some property P. Does K have property P?
Suppose that \(C(K) \) and \(C(L) \) are isomorphic. How \(K \) is topologically related to \(L \)?
Some questions

- Suppose that $C(K)$ and $C(L)$ are isomorphic. How K is topologically related to L?
- Suppose that $C(K)$ can be embedded into $C(L)$, where L has some property \mathcal{P}. Does K have property \mathcal{P}?
Results on positive embeddings

Let $T : C(K) \rightarrow C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\phi : L \rightarrow \mathbb{K}^p$ which is onto ($\bigcup y \in L \phi(y) = K$) and upper semicontinuous (i.e. \{y : \phi(y) \subseteq U\} \subseteq L is open for every open U).

Corollary
If $C(K)$ can be embedded into $C(L)$ by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Fréchet (or sequentially compact) then K is Fréchet (sequentially compact).

Remark:
p is the integer part of $\|T\| \cdot \|T^{-1}\|$.

G. Plebanek (IM UW)
Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \geq 0$ implies $Tg \geq 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\phi : L \to [K]/x_{\leq p}$ which is onto ($\bigcup y \in L \phi(y) = K$) and upper semicontinuous (i.e. $\{ y : \phi(y) \subseteq U \} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If $C(K)$ can be embedded into $C(L)$ by a positive operator then $\tau(K)/x_{\leq p} \geq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Remark:

p is the integer part of $||T|| \cdot ||T^{-1}||$.

G. Plebanek (IM UWr)

Isomorphisms of $C(K)$ spaces
Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \geq 0$ implies $Tg \geq 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto ($\bigcup_{y \in L} \varphi(y) = K$) and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If $C(K)$ can be embedded into $C(L)$ by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Remark: p is the integer part of $||T|| \cdot ||T^{-1}||$.

G. Plebanek (IM UW)
Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \geq 0$ implies $Tg \geq 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $\bigcup_{y \in L} \varphi(y) = K$ and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If $C(K)$ can be embedded into $C(L)$ by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).
Results on positive embeddings

An embedding $T : C(K) \to C(L)$ is **positive** if $C(K) \ni g \geq 0$ implies $Tg \geq 0$.

Theorem

Let $T : C(K) \to C(L)$ be a positive isomorphic embedding. Then there is $p \in \mathbb{N}$ and a finite valued mapping $\varphi : L \to [K]^{\leq p}$ which is onto $(\bigcup_{y \in L} \varphi(y) = K)$ and upper semicontinuous (i.e. $\{y : \varphi(y) \subseteq U\} \subseteq L$ is open for every open $U \subseteq K$).

Corollary

If $C(K)$ can be embedded into $C(L)$ by a positive operator then $\tau(K) \leq \tau(L)$ and if L is Frechet (or sequentially compact) then K is Frechet (sequentially compact).

Remark: p is the integer part of $\|T\| \cdot \|T^{-1}\|$.
Theorem
Suppose that there is an operator $T : C(K) \to C(L)$ such that T is either positive isomorphic embedding or an arbitrary isomorphism. Then there is nonempty open $U \subseteq K$ such that U is a continuous image of some compact subspace of L. In fact the family of such U forms a π-base in K.

Corollary
If $C([0,1]) \sim C(L)$ then L maps continuously onto $[0,1]$.
Main result

Theorem

Suppose that there is an operator $T : C(K) \to C(L)$ such that T is either positive isomorphic embedding or an arbitrary isomorphism.

Then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π-base in K.

Corollary

If $C[0,1] \sim C(L)$ then L maps continuously onto $[0,1]$.

G. Plebanek (IM UWr)
Isomorphisms of $C(K)$ spaces
2013
Main result

Theorem
Suppose that there is an operator $T : C(K) \to C(L)$ such that T is either positive isomorphic embedding or an arbitrary isomorphism. Then there is nonempty open $U \subseteq K$ such that \overline{U} is a continuous image of some compact subspace of L. In fact the family of such U forms a π-base in K.

Corollary
If $C[0, 1]^\kappa \sim C(L)$ then L maps continuously onto $[0, 1]^\kappa$.
This is equivalent to saying that $C(K)$ contains a point-countable family separating points of K.

Problem Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

The answer is 'yes' under $\text{MA}(\omega_1)$.

Theorem If $C(K) \sim C(L)$, where L is Corson compact then K has a π-base of sets having Corson compact closures. In particular, K is itself Corson compact whenever K is homogeneous.
K is **Corson compact** if $K \hookrightarrow \Sigma(\mathbb{R}^\kappa)$ for some κ, where

$$\Sigma(\mathbb{R}^\kappa) = \{x \in \mathbb{R}^\kappa : |\{\alpha : x_\alpha \neq 0\}| \leq \omega\}.$$
Corson compacta

\(K \) is **Corson compact** if \(K \hookrightarrow \Sigma(\mathbb{R}^\kappa) \) for some \(\kappa \), where

\[
\Sigma(\mathbb{R}^\kappa) = \{ x \in \mathbb{R}^\kappa : |\{ \alpha : x_\alpha \neq 0 \}| \leq \omega \}.
\]

This is equivalent to saying that \(C(K) \) contains a point-countable family separating points of \(K \).
Corson compacta

K is **Corson compact** if $K \hookrightarrow \Sigma(\mathbb{R}^\kappa)$ for some κ, where

$$
\Sigma(\mathbb{R}^\kappa) = \{ x \in \mathbb{R}^\kappa : |\{\alpha : x_\alpha \neq 0\}| \leq \omega \}.
$$

This is equivalent to saying that $C(K)$ contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?
Corson compacta

If K is Corson compact if $K \hookrightarrow \Sigma(\mathbb{R}^\kappa)$ for some κ, where
\[
\Sigma(\mathbb{R}^\kappa) = \{ x \in \mathbb{R}^\kappa : |\{ \alpha : x_\alpha \neq 0 \}| \leq \omega \}.
\]

This is equivalent to saying that $C(K)$ contains a point-countable family separating points of K.

Problem

Suppose that $C(K) \sim C(L)$, where L is Corson compact. Must K be Corson compact?

The answer is ‘yes’ under $MA(\omega_1)$.
Corson compacta

K is **Corson compact** if \(K \hookrightarrow \Sigma(\mathbb{R}^{\kappa}) \) for some \(\kappa \), where

\[
\Sigma(\mathbb{R}^{\kappa}) = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha : x_\alpha \neq 0 \}| \leq \omega \}.
\]

This is equivalent to saying that \(C(K) \) contains a point-countable family separating points of \(K \).

Problem

Suppose that \(C(K) \sim C(L) \), *where* \(L \) *is Corson compact. Must* \(K \) *be Corson compact?*

The answer is ‘yes’ under \(MA(\omega_1) \).

Theorem

If \(C(K) \sim C(L) \) *where* \(L \) *is Corson compact* \n*then* \(K \) *has a \(\pi \) – base of sets having Corson compact closures. In particular, \(K \) *is itself Corson compact whenever* \(K \) *is homogeneous.*
Basic technique

If μ is a finite regular Borel measure on K, then μ is a continuous functional $C(K)$:

$$\mu(g) = \int g \, d\mu$$

for $\mu \in C(K)$. In fact, $C(K)^\ast$ can be identified with the space of all signed regular measures of finite variation (i.e. of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 - 0$).

Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^\ast$ be the Dirac measure. We can define $\nu_y \in C(K)^\ast$ by

$$\nu_y(g) = Tg(y)$$

for $g \in C(K)$. ($\nu_y = T^* \delta_y$).

Lemma: Let $T : C(K) \to C(L)$ be an embedding such that for $g \in C(K)$

$$m \cdot ||g|| \leq ||Tg|| \leq ||g||.$$

Then for every $x \in K$ and $m' < m$ there is $y \in L$ such that $\nu_y(\{x\}) > m'$.
Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$:

$$\mu(g) = \int g \, d\mu$$

for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, μ_1, μ_2).

Let $T : C(K) \to C(L)$ be a linear operator.

Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)$ ($\nu_y = T^* \delta_y$).

Lemma: Let $T : C(K) \to C(L)$ be an embedding such that for $g \in C(K)$

$$m \cdot \|g\| \leq \|Tg\| \leq \|g\|.$$

Then for every $x \in K$ and $m' < m$ there is $y \in L$ such that $\nu_y(\{x\}) > m'$.

G. Plebanek (IM UW)
Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

In fact, $C'(K)$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).

Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)'$ be the Dirac measure.

We can define $\nu_y \in C(K)'$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)$ ($\nu_y = T^* \delta_y$).

Lemma

Let $T : C(K) \to C(L)$ be an embedding such that for $g \in C(K)$ $m \cdot \|g\| \leq \|Tg\| \leq \|g\|$. Then for every $x \in K$ and $m' < m$ there is $y \in L$ such that $\nu_y(\{x\}) > m'$.
Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).
Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \ d\mu$ for $\mu \in C(K)$. In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).

Let $T : C(K) \to C(L)$ be a linear operator.
If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).

Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.
If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).

Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)$.
Basic technique

If \(\mu \) is a finite regular Borel measure on \(K \) then \(\mu \) is a continuous functional \(C(K) : \mu(g) = \int g \, d\mu \) for \(\mu \in C(K) \).

In fact, \(C(K)^* \) can be identified with the space of all signed regular measures of finite variation (i.e. is of the form \(\mu_1 - \mu_2, \mu_1, \mu_2 \geq 0 \)).

Let \(T : C(K) \to C(L) \) be a linear operator. Given \(y \in L \), let \(\delta_y \in C(L)^* \) be the Dirac measure.

We can define \(\nu_y \in C(K)^* \) by \(\nu_y(g) = Tg(y) \) for \(g \in C(K) \) (\(\nu_y = T^*\delta_y \)).
Basic technique

If μ is a finite regular Borel measure on K then μ is a continuous functional $C(K)$: $\mu(g) = \int g \, d\mu$ for $\mu \in C(K)$.

In fact, $C(K)^*$ can be identified with the space of all signed regular measures of finite variation (i.e. is of the form $\mu_1 - \mu_2$, $\mu_1, \mu_2 \geq 0$).

Let $T : C(K) \to C(L)$ be a linear operator. Given $y \in L$, let $\delta_y \in C(L)^*$ be the Dirac measure.

We can define $\nu_y \in C(K)^*$ by $\nu_y(g) = Tg(y)$ for $g \in C(K)$ ($\nu_y = T^*\delta_y$).

Lemma

Let $T : C(K) \to C(L)$ be an embedding such that for $g \in C(K)$

$$m \cdot \|g\| \leq \|Tg\| \leq \|g\|.$$

Then for every $x \in K$ and $m' < m$ there is $y \in L$ such that $\nu_y(\{x\}) > m'$.

G. Plebanek (IM UWr)
An application

Theorem (W. Marciszewski, GP (2010))

Suppose that $C(K)$ embeds into $C(L)$, where L is Corson compact. Then K is Corson compact provided it has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into $C(L)$, L Corson?

No, if the embedding operator is to be positive or an isomorphism.

No, under MA+ non CH.

No, under CH (in fact whenever $2^{\omega_1} > c$).
An application

Theorem (W. Marciszewski, GP (2010))

Suppose that $C(K)$ embeds into $C(L)$, where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into $C(L)$, L Corson?

No, if the embedding operator is to be positive or an isomorphism.

No, under MA+ non CH.

No, under CH (in fact whenever $2^{\omega_1} > \mathfrak{c}$).
An application

Theorem (W. Marciszewski, GP (2010))

Suppose that \(C(K) \) embeds into \(C(L) \), where \(L \) is Corson compact. Then \(K \) is Corson compact provided it has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed \(C(2^{\omega_1}) \) into \(C(L) \), \(L \) Corson?
An application

Theorem (W. Marciszewski, GP (2010))

Suppose that $C(K)$ embeds into $C(L)$, where L is Corson compact. Then K is Corson compact provided it has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into $C(L)$, L Corson?

No, if the embedding operator is to be positive or an isomorphism.
An application

Theorem (W. Marciszewski, GP (2010))

Suppose that $C(K)$ embeds into $C(L)$, where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into $C(L)$, L Corson?

No, if the embedding operator is to be positive or an isomorphism.
No, under MA+ non CH.
Theorem (W. Marciszewski, GP (2010))

Suppose that $C(K)$ embeds into $C(L)$, where L is Corson compact. Then K is Corson compact provided has some measure-theoretic property (which holds true for all linearly ordered compacta and Rosenthal compacta).

Problem

Can one embed $C(2^{\omega_1})$ into $C(L)$, L Corson?

No, if the embedding operator is to be positive or an isomorphism. No, under MA+ non CH. No, under CH (in fact whenever $2^{\omega_1} > \mathfrak{c}$).