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Abstract

In 1948 Horn and Tarski asked whether the notions of a σ-�nite cc and a σ-bounded cc

ordering are equivalent. We give a negative answer to this question.

When analyzing Boolean algebras carrying a measure, Horn and Tarski [HT48] de�ned the
following two notions:

De�nition 1. An ordering P is called

(i) σ-bounded cc if P =
⋃
n∈ω

Pn, where each Pn has the n+ 2-cc.

(ii) σ-�nite cc if P =
⋃
n∈ω

Pn, where each Pn has the ω-cc.

Here an ordering or its subset has the κ-cc (κ-chain condition) for a cardinal κ if it contains no
antichain (set of pairwise orthogonal elements) of size κ.

Clearly, any σ-bounded cc ordering is σ-�nite cc (and both are ω1-cc - also called ccc). Horn
and Tarski asked whether these two classes coincide:

Problem Horn Tarski 1948 [HT48] Is every σ-�nite cc ordering also σ-bounded cc?

There is a standard way how to map an ordering densely into a complete Boolean algebra.
This mapping preserves our two properties. The Horn Tarski problem can therefore be formulated
in terms of Boolean algebras as well. It is easy to see that a Boolean algebra carrying a strictly
positive measure is σ-bounded cc (take as Pn the set of elements of measure at least 1/n). If the
Boolean algebra carries only a strictly positive exhaustive submeasure this property could get lost,
but still the Boolean algebra will be σ-�nite cc (take the same Pn). The question, whether any
Boolean algebra carrying a strictly positive exhaustive submeasure carries also a strictly positive
measure, is one formulation of the famous Control measure problem. It was therefore expected
that an anticipated negative solution of this problem will give also a counterexample to the Horn
Tarski problem. But when such an example solving the Control measure problem was constructed
by M. Talagrand ([Tal08]) it turned out that it is even σ-bounded cc, so the Horn Tarski problem
remained open. We will construct here a counterexample to the Horn Tarski problem.

Theorem 1. There exists an ordering which is σ-�nite cc but not σ-bounded cc.

The technique used in the construction appeared �rst in [Tod91] and is further developed in
[BPT] :

For a subset F of a topological space X let F d denote the set of all accumulation points.
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De�nition 2. For a topological space X the Todorcevic ordering T(X) is the set of all subsets
F of the space which are a �nite union of converging sequences including their limit points. The
order relation is de�ned by such extensions which preserve isolated points, i.e. F1 ≤ F2 if F1 ⊇ F2

and F d
1 ∩ F2 = F d

2 .

We start with the set T =
⋃
α<ω1

α+1ω. This set is made into a tree by the order of inclusion.
We will extend the order of the tree into a linear one. De�ne an equivalence relation for the
elements of the tree such that two elements are equivalent if they have the same predecessors, i.e.
s ∼ t if ∀r ∈ T (r ⊂ s ↔ r ⊂ t). Equip every equivalence class under ∼ with an order � of type
ω∗, i.e. ω ordered in the reverse. Then we can de�ne the lexicographical order ≤ on T by s < t if
either s ⊂ t or there are s′ ⊆ s and t′ ⊆ t such that s′ ∼ t′ and s′ ≺ t′. Take the interval topology
τ≤ on T . We apply the operator T on this linearly ordered topological space (T, τ≤) to obtain the
Todorcevic ordering P = T(T ). This will be the example which proves the theorem:

Claim 1. P is not σ-bounded cc.

Proof. Assume by contradiction that P =
⋃
n∈ω Pn, with each Pn being n+ 2-cc, witnesses that P

is σ-bounded cc. For n < ω de�ne functions fn : T −→ n+2 such that fn(s) is the maximal length
of an antichain which is a subset of the set Pn(s) = {F ∈ Pn : ∃t ∈ F d(t ⊇ s)}. The function fn is
decreasing with respect to⊆. It follows that for any s ∈ T there is an s′ ⊇ s such that fn(s′) = fn(t)
for all t ⊇ s′. We �nd a increasing (with respect to ⊆) sequence {sn} such that fn(sn) = fn(t)
for all t ⊇ sn. For an arbitrary s ∈ T with s ⊃

⋃
n<ω sn we have therefore fn(s) = fn(t) for all

t ⊇ s and n < ω. Fix such an s and let f(n) = fn(s). For n < ω choose in Pn(san) an antichain
{Fn,i}i<f(n) and tn,i ⊇ san such that tn,i ∈ (Fn,i)

d for i < f(n). Then {tn,i}n<ω,i<f(n) converges to
s (if not �nite) and so does {san}n<ω, i.e. F = {tn,i}n<ω,i<f(n) ∪ {san}n<ω ∪ {s} ∈ P. Notice that
F is orthogonal to all Fn,i for n < ω and i < f(n) since tn,i is isolated in F and an accumulation
point in Fn,i. But F has to be contained in some Pn, hence {Fn,i}i<f(n) ∪ {F} is an antichain in
Pn(s) and therefore fn(s) ≥ f(n) + 1, a contradiction.

Claim 2. P is σ-�nite cc.

Proof. We argue in the order ≤. The set {sak}k<ω is a decreasing sequence with in�mum s. We
can therefore for any F ∈ P �x a k(F ) < ω such that, for s ∈ F d, the open intervals (s, sak(F ))
are disjoint from F d. No increasing sequence of (T,≤) has a supremum. This means that any
sequence which converges to s is above s with the possible exception of �nitely many elements.
Therefore R(F ) = F\

(⋃
s∈F d(s, sak(F )) ∪ F d

)
is �nite. Let

Pk,n,m = {F ∈ P : k(F ) = k & |F d| = n & |R(F )| = m}.

Surely P =
⋃
k,n,m<ω Pk,n,m. We have to show that all Pk,n,m's are �nite cc. Assume by contradiction

that {Fi}i<ω ⊂ Pk̄,n̄,m̄ is an in�nite antichain for some �xed k̄, n̄, m̄. Let (Fi)
d = {sni }n<n̄ and

R(Fi) = {rmi }m<m̄ be enumerated and put F n
i = Fi ∩ (sni , s

n
i
ak̄). Then F n

i is a sequence with limit
sni and Fi\(Fi)d =

⋃
n<n̄ F

n
i ∪{rmi }m<m̄ is the set of isolated points of Fi. We say that {i, j} ∈ [ω]2,

i < j, has color

(1, n, n′) if sni ∈ F n′

j

(2, n,m) if sni = rmj

(3, n, n′) if snj ∈ F n′

i

(4, n,m) if snj = rmi
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for n, n′ < n̄ and m < m̄. Since {Fi}i<ω was assumed to be an antichain, there must be for any
{i, j} ∈ [ω]2 a point which is isolated in Fi and not isolated in Fj or vice versa, i.e. any pair {i, j}
obtains at least one color. Ramsey's theorem asserts that there must be an in�nite subset of ω
homogeneous in one color. For notational convenience, we assume that ω itself is this homogeneous
set. We are going to derive a contradiction for each of the colors.

1. ω is homogeneous in color (1, n, n′).

Note that s ∈ (t, tak̄) implies s ⊃ t and (s, sak̄) ⊂ (t, tak̄).
Homogeneity in color (1, n, n′) implies sni ∈ F n′

j ⊆ (sn
′
j , s

n′
j

ak̄), i.e. sni ⊃ sn
′
j for all i < j.

We have sni−1 ⊃ sn
′
i , s

n′
i+1, hence s

n′
i ⊆ sn

′
i+1 or sn

′
i ⊃ sn

′
i+1. Consider the �rst case. The order ≤

is stronger than ⊆, therefore sn′
i ≤ sn

′
i+1 < sni−1 ∈ F n′

i ⊆ (sn
′
i , s

n′
i

ak̄). The latter is an interval,
hence sn

′
i+1 = sn

′
i or sn

′
i+1 ∈ (sn

′
i , s

n′
i

ak̄), therefore (sn
′
i+1, s

n′
i+1

ak̄) ⊆ (sn
′
i , s

n′
i

ak̄). But sni /∈ (sn
′
i , s

n′
i

ak̄).
This follows from the de�nition of k̄ = k(Fi) at the beginning of the proof. On the other hand,
sni ∈ F n′

i+1 ⊆ (sn
′
i+1, s

n′
i+1

ak̄) by homogeneity - a contradiction. So the second case sn
′
i ⊃ sn

′
i+1

must hold for all i < ω, i.e. the sn
′
i 's are a strictly decreasing sequence in the tree T , again a

contradiction.

2. ω is homogeneous in color (2, n,m).

From sn1 = rm2 and sn0 = rm2 and sn0 = rm1 (homogeneity in color (2, n,m)) we conclude sn1 = rm1
- a contradiction since sn1 is an accumulation point in F1 and rm1 is isolated in F1.

3. ω is homogeneous in color (3, n, n′).

Assume that there are i < j such that sni = snj . Then s
n
i = snj ∈ F n′

i , but sni is an accumulation

point of Fi whereas F
n′
i contains only isolated points of Fi - a contradiction. So the s

n
j 's are pairwise

di�erent for j < ω. Homogeneity in color (3, n, n′) implies that all snj , j > 0, are in F n′
0 , the set

{snj }ωj=1 therefore converges to sn
′

0 . By the same argument, we obtain that {snj }ωj=2 converges to

sn
′

1 , hence sn
′

0 = sn
′

1 . Again by homogeneity sn1 ∈ F n′
0 ⊆ (sn

′
0 , s

n′
0

ak̄) = (sn
′

1 , s
n′
1

ak̄) - a contradiction
since sn1 /∈ (sn

′
1 , s

n′
1

ak̄) by de�nition of k̄ = k(F1).

4. ω is homogeneous in color (4, n,m).

The same as color (2, n,m).

For all the colors we obtained a contradiction, so an in�nite antichain cannot exist.
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