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Abstract

In 1948 Horn and Tarski asked whether the notions of a o-finite cc and a o-bounded cc
ordering are equivalent. We give a negative answer to this question.

When analyzing Boolean algebras carrying a measure, Horn and Tarski [HT48| defined the
following two notions:

Definition 1. An ordering PP is called

(i) o-bounded cc if P = UP"’ where each P, has the n + 2-cc.

new

(i) o-finite cc if P = UP”’ where each P, has the w-cc.

new

Here an ordering or its subset has the k-cc (k-chain condition) for a cardinal k if it contains no
antichain (set of pairwise orthogonal elements) of size k.

Clearly, any o-bounded cc ordering is o-finite cc (and both are wi-cc - also called cec). Horn
and Tarski asked whether these two classes coincide:

Problem Horn Tarski 1948 [HT48| Is every o-finite cc ordering also o-bounded cc?

There is a standard way how to map an ordering densely into a complete Boolean algebra.
This mapping preserves our two properties. The Horn Tarski problem can therefore be formulated
in terms of Boolean algebras as well. It is easy to see that a Boolean algebra carrying a strictly
positive measure is o-bounded cc (take as P, the set of elements of measure at least 1/n). If the
Boolean algebra carries only a strictly positive exhaustive submeasure this property could get lost,
but still the Boolean algebra will be o-finite cc (take the same P,). The question, whether any
Boolean algebra carrying a strictly positive exhaustive submeasure carries also a strictly positive
measure, is one formulation of the famous Control measure problem. It was therefore expected
that an anticipated negative solution of this problem will give also a counterexample to the Horn
Tarski problem. But when such an example solving the Control measure problem was constructed
by M. Talagrand ([Tal08]) it turned out that it is even o-bounded cc, so the Horn Tarski problem
remained open. We will construct here a counterexample to the Horn Tarski problem.

Theorem 1. There exists an ordering which is o-finite cc but not o-bounded cc.

The technique used in the construction appeared first in [Tod91] and is further developed in
|IBPT] :
For a subset F of a topological space X let F® denote the set of all accumulation points.
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Definition 2. For a topological space X the Todorcevic ordering T(X) is the set of all subsets
F of the space which are a finite union of converging sequences including their limit points. The
order relation is defined by such extensions which preserve isolated points, i.e. F} < Fy if [} D F)
and FéN Fy, = Fi.

We start with the set 7' = J,_,, “"'w. This set is made into a tree by the order of inclusion.
We will extend the order of the tree into a linear one. Define an equivalence relation for the
elements of the tree such that two elements are equivalent if they have the same predecessors, i.e.
s~ tifVr € T(r C s < r Ct). Equip every equivalence class under ~ with an order < of type
w*, i.e. w ordered in the reverse. Then we can define the lexicographical order < on T by s < t if
either s C t or there are s’ C s and t' C t such that s’ ~ ' and s’ < t/. Take the interval topology
T7< on T. We apply the operator T on this linearly ordered topological space (T, 7<) to obtain the
Todorcevic ordering P = T(7"). This will be the example which proves the theorem:

Claim 1. P is not o-bounded cc.

Proof. Assume by contradiction that P = |J,,.,, P, with each P, being n 4 2-cc, witnesses that P
is o-bounded cc. For n < w define functions f,, : T — n+2 such that f,(s) is the maximal length
of an antichain which is a subset of the set P,(s) = {F € P, : 3t € F(t 2 s)}. The function f, is
decreasing with respect to C. It follows that for any s € T thereis an s’ O s such that f,,(s') = f,.(¢)
for all t O s'. We find a increasing (with respect to C) sequence {s,} such that f,(s,) = f.(¢)
for all t O s,. For an arbitrary s € T with s D |J,,_,, s» we have therefore f,(s) = f,(t) for all
t O sand n < w. Fix such an s and let f(n) = f,(s). For n < w choose in P,(s"n) an antichain
{Fni}icfm) and t,; O s”n such that t,; € (F,:)® for i < f(n). Then {tn;i}tn<w,i<cfmn) converges to
s (if not finite) and so does {s"n}ncw, .. F' = {tn;i}ncwicrm) U {s n}ncw U {s} € P. Notice that
F' is orthogonal to all F,,; for n < w and i < f(n) since ¢, ; is isolated in F' and an accumulation
point in F, ;. But F has to be contained in some P,, hence {F,;};cfn) U {F'} is an antichain in
P,(s) and therefore f,(s) > f(n) + 1, a contradiction. O

Claim 2. P is o-finite cc.

Proof. We argue in the order <. The set {s"k}x<, is a decreasing sequence with infimum s. We
can therefore for any F' € P fix a k(F) < w such that, for s € F'%, the open intervals (s, s k(F))
are disjoint from F'?. No increasing sequence of (T, <) has a supremum. This means that any

sequence which converges to s is above s with the possible exception of finitely many elements.
Therefore R(F) = F\(U,cpa(s, s"k(F)) U F) is finite. Let

Ponm={F P : k(F)=k&|F!=n&|R(F) =m}.

Surely P =, ,, m<w Prnm- We have to show that all P, »,,’s are finite cc. Assume by contradiction
that {F;}ico C Ppnm is an infinite antichain for some fixed k,7,m. Let (F;)? = {s},<; and

n,m —
R(F;) = {r"};n<im be enumerated and put F* = F; N (s}, s?"k). Then F" is a sequence with limit

st and F\(F;)® = U, <, F/"U{r" }menm is the set of isolated points of F;. We say that {i,j} € [w]?,
1 < j, has color

(I,n,n') if s € Fj"/
(2,n,m) if s} =17
(3,m,n') if s} € FY
(4,n,m) if s§ ="
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for n,n’ < n and m < m. Since {F;};~, was assumed to be an antichain, there must be for any
{i,j} € [w]* a point which is isolated in F; and not isolated in Fj or vice versa, i.e. any pair {i,j}
obtains at least one color. Ramsey’s theorem asserts that there must be an infinite subset of w
homogeneous in one color. For notational convenience, we assume that w itself is this homogeneous
set. We are going to derive a contradiction for each of the colors.

1. w is homogeneous in color (1,n,n’).

Note that s € (t,t"k) implies s D t and (s,s7k) C (¢,t°k).

Homogeneity in color (1,n,n') implies st € F”/ C (s s"' k), i.e. s

s;L/ for all ¢+ < j.
We have s | D s, z+17 hence s” - 31+1 or s¥ O s,. Consider the first case. The order <
is stronger thah C, therefore st < 3i1+1 < sty € F"/ C (s,s" k). The latter is an interval,
hence s, = s or s, € (s, s E) therefore (s7,, s7 1 k) C (s, s¥' k). But s? ¢ (s, s2' k).
This follows from the definition of k = k(F;) at the beginning of the proof. On the other hand,
sy FZ’EH - (s?il,s?il”l_f) by homogeneity - a contradiction. So the second case s O s?jrl

(2
must hold for all i < w, i.e. the s7’s are a strictly decreasing sequence in the tree T, again a

contradiction.
2. w is homogeneous in color (2,n,m).

From s7 = r3* and s = r}* and s} = r]* (homogeneity in color (2,n,m)) we conclude s} = r"
- a contradiction since s7 is an accumulation point in F; and r{* is isolated in Fj.

3. w is homogeneous in color (3,n,n’).

Assume that there are ¢ < j such that s = s7. Then s} = s € F™, but s? is an accumulation
point of F; whereas FZ-”' contains only isolated points of F; - a contradiction. So the s}’s are pairwise
diﬁ'erent for j < w. Homogeneity in color (3,n,n’) implies that all s7, j > 0, are in FY', the set
{s 1 therefore Converges to s§. By the same argument, we obtaln that {s7}4_, converges to
s hence st = s7. Again by homogeneity s7 € F C (si',s8 k) = (s, s7 “/{:) - a contradiction
since s? ¢ (s7',s% k) by definition of k = k().

4. w is homogeneous in color (4,n,m).

The same as color (2,n,m).

For all the colors we obtained a contradiction, so an infinite antichain cannot exist.
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