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then u extends uniquely to a regular Borel (o-additive) measure p
on the Stone space K4 of A (with the same variation).

If K is a compact Hausdorff space, then C(K) denotes the Banach
space of real-valued continuous functions on K. The dual space
C(K)* is the space of all bounded regular Borel measures on K.

Question

Let (sn: n € w) be a sequence of measures on a Boolean algebra
A. Assume that lim,_« 1n(A) = 0 for every A € A. Does it follow
that

lim fdu, =0 forevery f e C(Ka)?

n—o0o KA
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Pointwise boundedness vs. uniform boundedness

A sequence of measures (ip,: n € w) on Ais
e pointwise convergent if 1,(A) — 0 for every A € A,
o weak* convergent if [, fdu, — 0 for every f € C(Ka),
e pointwise bounded if sup,, |1,(A)| < oo for every A € A,
e uniformly bounded if sup,, ||in|| < oo.

Let A be a Boolean algebra. TFAE:

@ every pointwise convergent sequence of measures on A is
weak* convergent,

@ every pointwise bounded sequence of measures on A is
uniformly bounded.

Let (1un: n € w) be a pointwise bounded sequence of measures on
a Boolean algebra A. Is (un: n € w) uniformly bounded?
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Nikodym's UBP

Theorem (Nikodym's Uniform Boundedness Principle '30)

If A is a o-algebra, then every pointwise bounded sequence of
measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence (pp: n € w) on A is anti-Nikodym if it is pointwise
bounded on A but not uniformly bounded.

Definition
An infinite Boolean algebra A has the Nikodym property (N) if
there are no anti-Nikodym sequences on A.
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o algebras with Subsequential Completeness Property (Haydon
'81),
e or IP, (E), (f), SIP, WSCP...

@ the algebra of Jordan measurable subsets of [0, 1]
(Schachermayer '82; generalized by Wheeler & Graves '83 and
Valdivia '13).

However, if the Stone space K4 of A has a convergent sequence,
then A does not have (N):

if x, — x, then put pu, = n(dx, — 0x)

All the notable examples are of cardinality at least c!
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Is there an infinite Boolean algebra with (N) and cardinality less
than ¢?

The Nikodym number
n = min{|A|: infinite A has (N)}.

If |JA| = w, then K4 C 2%, so A does not have (N). Thus:

wp <n<c.
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Lower bounds for n

If the Stone space K4 of A has a convergent sequence, then A
does not have (N).

Theorem (Booth '74)

s =min{w(K): K compact not sequentially compact}.

Theorem (Geschke '06)

Let K be infinite compact and such that w(K) < cov(M). Then,
K is either scattered or K contains a perfect subset L with a
Ggs-point x € L. In both cases, K contains a convergent sequence.

Corollary
max(s, cov(M)) < n.
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Lower bounds for

n
b <n

Corollary

e max (b, s, cov(M)) < n.
e Under MA(ctbl), n = c.

There is no ZFC inequality between any of b, s and cov(M).

o< n?
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Upper bounds for n?

Let A be with (N)

|

K4 has no convergent sequences

|

K 4 is not scattered

|

A is not superatomic

y

Friw) C A

|

3 homomorphism ¢: A — Fr(w)

|

3 Fr(w) € B C Fr(w) with (N) and |B| = n.
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Let's prove Nikodym's UBP!

Theorem (Nikodym's Uniform Boundedness Principle '30)

If A is a o-algebra, then every pointwise bounded sequence of
measures on A is uniformly bounded.

A sketch of the proof

Let A be a o-complete Boolean algebra. Assume A does not have (N) —
there exists anti-Nikodym <,u,,: ne w> on A.

@ Using anti-Nikodymness of {,: n € w) construct a special
antichain (a,: k €w) in A...

@ Using specialness of (ax: k € w) obtain a subantichain (a;: i € A)
(A € [w]”) such that:

sl ¥ )| = o

i€eA

A contradiction!
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The anti-Nikodym number n,

n, = min {k: every ctbl A has k-anti-Nikodym property}.
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Definition

Given F C [w]”, an antichain (a,: n € w) in A is F-complete in
Aif \/,caan € Aforevery Ac F.

A is o-complete iff every antichain in A is [w]“-complete.
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A family F C [w]” is Nikodym extracting if for every algebra A
the following condition holds:

for every sequence <,u,,: ne w> of positive measures on A
and every F-complete antichain <an eA: ne w> in A, there
is A € F such that the following inequality is satisfied:

,Un(\/ak> <1

keA
k>n

for every n € A.

Darst '67: [w]* is Nikodym extracting.

The Nikodym extracting number n,

ne = min {|F|: F C [w]” is Nikodym extracting}.
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e Start with some By C p(k), |Bo| = k.
@ On a successor step:
Q take cofinal F C [B,]”, |F| = &;
Q for every A € F take {<a:,f: ne w>: v < na} witnessing
n,-anti-Nikodymness;
@ put by =V ,caa) forevery Ac G and v <n,;
Q put O(A) = {b): AcG,y<n,};
© B,41 is generated by B, U 4. » P(A).
@ On a limit step take the union of preceding algebras.

e Continue until A = B,, is obtained.

A has the Nikodym property and cardinality .



The theorem

Theorem

Assume that max(n,,ne) < k for a cardinal number k such that
cof([k]) = k. Then, there exists a Boolean algebra A with the
Nikodym property and of cardinality k.
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The anti-Nikodym number

The anti-Nikodym number n,

n, = min {x: every ctbl A has s-anti-Nikodym property}.

The anti-Nikodym number n, for A

n,(A) = min {x: A has x-anti-Nikodym property}.

Proposition

Let A, B be Boolean algebras and h : A — B an epimorphism.
Then, ny(A) > n,(B).

Corollary

For any countable A we have:

n,(FC) < ny(A) < ny(Fr(w)) = n,.
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The Nikodym extracting number

The Nikodym extracting number n,

ne = min {|F|: F C [w]” is Nikodym extracting}.

Definition

An ultrafilter U on w is selective (Ramsey) if for every partition P

of w disjoint with U there is A € U such that |[AN P| < 1 for every
PeP.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The selective ultrafilter number ug

us = min {|F|: F is a basis of a selective ultrafilter}.
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The Nikodym extracting number

cov(M) < ne < min(d, us).

cov(N) ———> non(M) cof(N)
p—
add(N) ———=> add(M) non(N)
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Q@ b < n, < cof(N).
Q cov(M) < ne < min(d, us).
@ Ifcof([x]”) = k = max(na,ne), then n < k.

Theorem

Consistently, n < c.
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Consequence — cofinality and homomorphism type

Definition
cof (A) = min{x : I(As: €< k) A}
h(A) = min{|¢(A)|: ¢ is a homomorphism}.

Theorem (Koppelberg '77)
Q w < cof(A) < h(A) <,
@ (MA) If|A| < ¢, then cof(A) = h(A) = w.

Theorem (Just—Koszmider '91)
In the Sacks model there exists a Boolean algebra B such that
|B| = cof(B) = h(B) = ws.

Theorem (Pawlikowski—Ciesielski '02)
Assuming cof (N') = w1, there exists a Boolean algebra B such that
|B| = cof (B) = ws.
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Consequence — cofinality of Boolean algebras

Theorem (Schachermayer '82)
If A has the Nikodym property, then cof(A) > w.

Corollary

Assuming cof (V) < k = cof([k]”), there exists a Boolean algebra
A such that |A| =, h(A) > n and cof (A) = w;.

An old open question

Is there a consistent example of a Boolean algebra B for which
w1 < cof(B) < ¢?
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Consequence — the Efimov problem

Definition
An infinite compact Hausdorff space is a Efimov space if it
contains neither a convergent sequence nor a copy of Sw.

The Efimov Problem '69

Does there exist a Efimov space?

Fedoré¢uk: CH, 0, s = w1 & ¢ = 2*1
Dow: cof([s]¥) =5 & 2° < 2°
and many more...

Theorem

Assuming cof(N) < k = cof ([k]”) < ¢, there exists a Efimov space
K such that w(K) = k and for every infinite closed subset L of K
we have w(L) > n.



Thank you for the attention!



