The Nikodym property of Boolean algebras and cardinal invariants of the continuum

Damian Sobota

Kurt Gödel Research Center, Vienna

Winter School, Hejnice 2017
Let’s start with measures

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.
Let’s start with measures

A **measure** μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_\mathcal{A}$ of \mathcal{A} (with the same variation).
Let’s start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K.
Let’s start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^*$ is the space of all bounded regular Borel measures on K.

Question

Let $\langle \mu_n : n \in \omega \rangle$ be a sequence of measures on a Boolean algebra \mathcal{A}. Assume that $\lim_{n \to \infty} \mu_n(\mathcal{A}) = 0$ for every $\mathcal{A} \in \mathcal{A}$. Does it follow that $\lim_{n \to \infty} \int_{K_{\mathcal{A}}} f \, d\mu_n = 0$ for every $f \in C(K_{\mathcal{A}})$?
A **measure** \(\mu \) on a Boolean algebra \(\mathcal{A} \) is a signed real-valued finitely additive function of finite variation. If \(\mu \) is a measure on \(\mathcal{A} \), then \(\mu \) extends uniquely to a regular Borel (\(\sigma \)-additive) measure \(\mu \) on the Stone space \(K_{\mathcal{A}} \) of \(\mathcal{A} \) (with the same variation).

If \(K \) is a compact Hausdorff space, then \(C(K) \) denotes the Banach space of real-valued continuous functions on \(K \). The dual space \(C(K)^* \) is the space of all bounded regular Borel measures on \(K \).

Question

Let \(\langle \mu_n : n \in \omega \rangle \) be a sequence of measures on a Boolean algebra \(\mathcal{A} \). Assume that \(\lim_{n \to \infty} \mu_n(A) = 0 \) for every \(A \in \mathcal{A} \).
A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^*$ is the space of all bounded regular Borel measures on K.

Question

Let $\langle \mu_n : n \in \omega \rangle$ be a sequence of measures on a Boolean algebra \mathcal{A}. Assume that $\lim_{n \to \infty} \mu_n(A) = 0$ for every $A \in \mathcal{A}$. Does it follow that

$$\lim_{n \to \infty} \int_{K_{\mathcal{A}}} f \, d\mu_n = 0$$

for every $f \in C(K_{\mathcal{A}})$?
A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- **pointwise convergent** if $\mu_n(A) \to 0$ for every $A \in \mathcal{A},$

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every pointwise convergent sequence of measures on \mathcal{A} is weak* convergent,
- every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

The question

Let $\langle \mu_n : n \in \omega \rangle$ be a pointwise bounded sequence of measures on a Boolean algebra \mathcal{A}. Is $\langle \mu_n : n \in \omega \rangle$ uniformly bounded?
A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- **pointwise convergent** if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- **weak* convergent** if $\int_{K_A} f \, d\mu_n \to 0$ for every $f \in C(K_A)$,
A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- **pointwise convergent** if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- **weak* convergent** if $\int_{K_A} f \, d\mu_n \to 0$ for every $f \in C(K_A)$,
- **pointwise bounded** if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
A sequence of measures \(\langle \mu_n : n \in \omega \rangle \) on \(\mathcal{A} \) is

- **pointwise convergent** if \(\mu_n(A) \to 0 \) for every \(A \in \mathcal{A} \),
- **weak* convergent** if \(\int_{K_A} f \, d\mu_n \to 0 \) for every \(f \in C(K_A) \),
- **pointwise bounded** if \(\sup_n |\mu_n(A)| < \infty \) for every \(A \in \mathcal{A} \),
- **uniformly bounded** if \(\sup_n \|\mu_n\| < \infty \).

Fact
Let \(\mathcal{A} \) be a Boolean algebra. TFAE:
- every pointwise convergent sequence of measures on \(\mathcal{A} \) is weak* convergent,
- every pointwise bounded sequence of measures on \(\mathcal{A} \) is uniformly bounded.

The question
Let \(\langle \mu_n : n \in \omega \rangle \) be a pointwise bounded sequence of measures on a Boolean algebra \(\mathcal{A} \). Is \(\langle \mu_n : n \in \omega \rangle \) uniformly bounded?
A sequence of measures $\langle \mu_n : \ n \in \omega \rangle$ on \mathcal{A} is

- **pointwise convergent** if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- **weak* convergent** if $\int_{K_A} f \ d\mu_n \to 0$ for every $f \in C(K_A)$,
- **pointwise bounded** if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
- **uniformly bounded** if $\sup_n \|\mu_n\| < \infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every **pointwise convergent** sequence of measures on \mathcal{A} is **weak* convergent**,
- every **pointwise bounded** sequence of measures on \mathcal{A} is **uniformly bounded**.
A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- **pointwise convergent** if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- **weak* convergent** if $\int_{K_{\mathcal{A}}} f \, d\mu_n \to 0$ for every $f \in C(K_{\mathcal{A}})$,
- **pointwise bounded** if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
- **uniformly bounded** if $\sup_n \|\mu_n\| < \infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every **pointwise convergent** sequence of measures on \mathcal{A} is **weak* convergent**,
- every **pointwise bounded** sequence of measures on \mathcal{A} is **uniformly bounded**.

The question

Let $\langle \mu_n : n \in \omega \rangle$ be a pointwise bounded sequence of measures on a Boolean algebra \mathcal{A}. Is $\langle \mu_n : n \in \omega \rangle$ uniformly bounded?
Theorem (Nikodym’s Uniform Boundedness Principle ‘30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.
Nikodym’s UBP

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz
Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If A is a σ-algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence $\langle \mu_n : n \in \omega \rangle$ on A is anti-Nikodym if it is pointwise bounded on A but not uniformly bounded.
Nikodym’s UBP

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is anti-Nikodym if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition

An infinite Boolean algebra \mathcal{A} has the Nikodym property (N) if there are no anti-Nikodym sequences on \mathcal{A}.
The Nikodym Property

Notable examples

- σ-algebras (Nikodym ’30),
The Nikodym Property

Notable examples
- σ-algebras (Nikodym ’30),
- algebras with Subsequential Completeness Property (Haydon ’81),
- or IP, (E), (f), SIP, WSCP...,
The Nikodym Property

Notable examples

- σ-algebras (Nikodym ’30),
- algebras with Subsequential Completeness Property (Haydon ’81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0,1]$ (Schachermayer ’82; generalized by Wheeler & Graves ’83 and Valdivia ’13).
The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0, 1]$ (Schachermayer '82; generalized by Wheeler & Graves '83 and Valdivia '13).

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N):

if $x_n \to x$, then put $\mu_n = n(\delta_{x_n} - \delta_x)$
The Nikodym Property

Notable examples

- σ-algebras (Nikodym ’30),
- algebras with Subsequential Completeness Property (Haydon ’81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0, 1]$ (Schachermayer ’82; generalized by Wheeler & Graves ’83 and Valdivia ’13).

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N):

$$\text{if } x_n \to x, \text{ then put } \mu_n = n(\delta_{x_n} - \delta_x)$$

All the notable examples are of cardinality at least \mathfrak{c}!
The Nikodym Number

Question

Is there an infinite Boolean algebra with (N) and cardinality less than c?
The Nikodym Number

Question

Is there an infinite Boolean algebra with \((N)\) and cardinality less than \(c\)?

The Nikodym number

\[n = \min\{|A| : \text{infinite } A \text{ has } (N)\} .\]
The Nikodym Number

Question
Is there an infinite Boolean algebra with (N) and cardinality less than \(c \)?

The Nikodym number
\[n = \min\{|A| : \text{infinite } A \text{ has (N)}\}. \]

If \(|A| = \omega \), then \(K_A \subseteq 2^\omega \), so \(A \) does not have (N). Thus:

\[\omega_1 \leq n \leq c. \]
If the Stone space K_A of A has a convergent sequence, then A does not have (N).
If the Stone space K_A of A has a convergent sequence, then A does not have (N).

Theorem (Booth ’74)

$s = \min \{ w(K) : K \text{ compact not sequentially compact} \}$.

Theorem (Geschke ’06)

Let K be infinite compact and such that $w(K) < \text{cov}(M)$. Then, K is either scattered or K contains a perfect subset L with a G^δ-point $x \in L$. In both cases, K contains a convergent sequence.

Corollary

$max \{ s, \text{cov}(M) \} \leq \eta$.

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

Theorem (Booth ’74)

$s = \min \{ w(K) : K \text{ compact not sequentially compact} \}.$

Theorem (Geschke ’06)

Let K be infinite compact and such that $w(K) < \text{cov}(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathbb{G}_δ-point $x \in L$. In both cases, K contains a convergent sequence.
If the Stone space K_A of A has a convergent sequence, then A does not have (N).

Theorem (Booth ’74)

$$s = \min \{ w(K) : K \text{ compact not sequentially compact} \}.$$

Theorem (Geschke ’06)

Let K be infinite compact and such that $w(K) < \text{cov}(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathcal{G}_δ-point $x \in L$. In both cases, K contains a convergent sequence.

Corollary

$$\max(s, \text{cov}(\mathcal{M})) \leq \eta.$$
Lower bounds for \(n \)

Proposition

\[b \leq n. \]
Lower bounds for n

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \leq n$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\max (b, s, \text{cov}(M)) \leq n$.</td>
</tr>
<tr>
<td>Under MA(c tbl), $n = c$.</td>
</tr>
</tbody>
</table>
Lower bounds for n

Proposition

$$ b \leq n. $$

Corollary

- $\max (b, s, \text{cov}(M)) \leq n.$
- *Under MA(ctl), $n = c.$*

There is no ZFC inequality between any of b, s and $\text{cov}(M)$.

Question

$$ d \leq n? $$
Upper bounds for n?

Let \mathcal{A} be with (N)
Upper bounds for n?

Let \mathcal{A} be with (N)

\Downarrow

$K_\mathcal{A}$ has no convergent sequences
Let \mathcal{A} be with (N)

\implies

$K_\mathcal{A}$ has no convergent sequences

\implies

$K_\mathcal{A}$ is not scattered
Let \mathcal{A} be with (N)
\[\Downarrow \]
$K_\mathcal{A}$ has no convergent sequences
\[\Downarrow \]
$K_\mathcal{A}$ is not scattered
\[\Downarrow \]
\mathcal{A} is not superatomic
Let \mathcal{A} be with (N)

\Downarrow

$K_\mathcal{A}$ has no convergent sequences

\Downarrow

$K_\mathcal{A}$ is not scattered

\Downarrow

\mathcal{A} is not superatomic

\Downarrow

$Fr(\omega) \subseteq \mathcal{A}$
Let \mathcal{A} be with (N)

\implies

$K_\mathcal{A}$ has no convergent sequences

\implies

$K_\mathcal{A}$ is not scattered

\implies

\mathcal{A} is not superatomic

\implies

$Fr(\omega) \subseteq \mathcal{A}$

\implies

\exists homomorphism $\Phi : \mathcal{A} \rightarrow \overline{Fr(\omega)}$
Let \mathcal{A} be with (N)
\[\Rightarrow\]
$K_{\mathcal{A}}$ has no convergent sequences
\[\Rightarrow\]
$K_{\mathcal{A}}$ is not scattered
\[\Rightarrow\]
\mathcal{A} is not superatomic
\[\Rightarrow\]
$Fr(\omega) \subseteq \mathcal{A}$
\[\Rightarrow\]
\exists homomorphism $\Phi : \mathcal{A} \rightarrow Fr(\omega)$
\[\Rightarrow\]
$\exists Fr(\omega) \subseteq \mathcal{B} \subseteq Fr(\omega)$ with (N) and $|\mathcal{B}| = \mathfrak{n}$.
Let’s prove Nikodym’s UBP!

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A}.

Using anti-Nikodymness of $\langle \mu_n : n \in \omega \rangle$ construct a special antichain $\langle a_k : k \in \omega \rangle$ in \mathcal{A} ...

Using specialness of $\langle a_k : k \in \omega \rangle$ obtain a subantichain $\langle a_i : i \in A \rangle$ ($A \in \mathcal{P}(\omega)$) such that:

$$\sup_{k \in A} |\mu_k(\bigvee_{i \in A} a_i) | = \infty.$$

A contradiction!
Let’s prove Nikodym’s UBP!

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \(\mathcal{A} \) is a \(\sigma \)-algebra, then every pointwise bounded sequence of measures on \(\mathcal{A} \) is uniformly bounded.

A sketch of the proof

Let \(\mathcal{A} \) be a \(\sigma \)-complete Boolean algebra. Assume \(\mathcal{A} \) does not have (N) — there exists anti-Nikodym \(\langle \mu_n : n \in \omega \rangle \) on \(\mathcal{A} \).

1. Using anti-Nikodymness of \(\langle \mu_n : n \in \omega \rangle \) construct a special antichain \(\langle a_k : k \in \omega \rangle \) in \(\mathcal{A} \)...
Let’s prove Nikodym’s UBP!

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A}.

1. Using anti-Nikodymness of $\langle \mu_n : n \in \omega \rangle$ construct a special antichain $\langle a_k : k \in \omega \rangle$ in \mathcal{A}...

2. Using specialness of $\langle a_k : k \in \omega \rangle$ obtain a subantichain $\langle a_i : i \in A \rangle$ ($A \in [\omega]^\omega$) such that:

$$\sup_{k \in A} |\mu_k \left(\bigvee_{i \in A} a_i \right)| = \infty.$$
Let’s prove Nikodym’s UBP!

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A}.

1. Using anti-Nikodymness of $\langle \mu_n : n \in \omega \rangle$ construct a special antichain $\langle a_k : k \in \omega \rangle$ in \mathcal{A}...

2. Using specialness of $\langle a_k : k \in \omega \rangle$ obtain a subantichain $\langle a_i : i \in A \rangle$ ($A \in [\omega]^{\omega}$) such that:

$$\sup_{k \in A} |\mu_k\left(\bigvee_{i \in A} a_i\right)| = \infty.$$

A contradiction!
Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has the κ-anti-Nikodym property if there exists a family
\[
\{ \langle a_n^\gamma \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa \}
\]
of κ many antichains in \mathcal{A} with the following property:

for every anti-Nikodym sequence of real-valued measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k : k \in \omega \rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

\[
|\mu_{n_k} (a_k^\gamma)| > \sum_{i=0}^{k-1} |\mu_{n_k} (a_i^\gamma)| + k + 1.
\]
Definition

Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has the κ-anti-Nikodym property if there exists a family $\{\langle a_\gamma^n \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every anti-Nikodym sequence of real-valued measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k : k \in \omega \rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

$$\left| \mu_{n_k} (a_\gamma^k) \right| > \sum_{i=0}^{k-1} \left| \mu_{n_k} (a_\gamma^i) \right| + k + 1.$$

The anti-Nikodym number n_a

$$n_a = \min \{ \kappa : \text{every ctbl } \mathcal{A} \text{ has } \kappa\text{-anti-Nikodym property} \}.$$
Definition

Given $\mathcal{F} \subseteq [\omega]^\omega$, an antichain $\langle a_n : n \in \omega \rangle$ in \mathcal{A} is \mathcal{F}-complete in \mathcal{A} if $\bigvee_{n \in \mathcal{A}} a_n \in \mathcal{A}$ for every $\mathcal{A} \in \mathcal{F}$.
Definition

Given $\mathcal{F} \subseteq [\omega]^\omega$, an antichain $\langle a_n : n \in \omega \rangle$ in \mathcal{A} is \mathcal{F}-complete in \mathcal{A} if $\bigvee_{n \in A} a_n \in \mathcal{A}$ for every $A \in \mathcal{F}$.

\mathcal{A} is σ-complete iff every antichain in \mathcal{A} is $[\omega]^\omega$-complete.
Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ is Nikodym extracting if for every algebra \mathcal{A} the following condition holds:

for every sequence $\langle \mu_n : n \in \omega \rangle$ of positive measures on \mathcal{A} and every \mathcal{F}-complete antichain $\langle a_n \in \mathcal{A} : n \in \omega \rangle$ in \mathcal{A}, there is $A \in \mathcal{F}$ such that the following inequality is satisfied:

$$\mu_n \left(\bigvee_{k \in A, k > n} a_k \right) < 1$$

for every $n \in A$.

Darst '67: $\mathcal{F} \subseteq [\omega]^{\omega}$ is Nikodym extracting.

The Nikodym extracting number $n_{\text{en}} = \min \{|F| : F \subseteq [\omega]^{\omega} \text{ is Nikodym extracting}\}$.
Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq [\omega]^\omega$ is **Nikodym extracting** if for every algebra \mathcal{A} the following condition holds:

For every sequence $\langle \mu_n : n \in \omega \rangle$ of positive measures on \mathcal{A} and every \mathcal{F}-complete antichain $\langle a_n \in \mathcal{A} : n \in \omega \rangle$ in \mathcal{A}, there is $A \in \mathcal{F}$ such that the following inequality is satisfied:

$$\mu_n\left(\bigvee_{k \in A, k > n} a_k \right) < 1$$

for every $n \in A$.

Darst ’67: $[\omega]^\omega$ is Nikodym extracting.

The Nikodym extracting number n_e

$$n_e = \min \{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^\omega \text{ is Nikodym extracting}\}.$$
Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^\omega)$ (then $\text{cf}(\kappa) > \omega!$).
The construction

Let \(\kappa \geq \max(n_a, n_e) \) be such that \(\kappa = \text{cof}([\kappa]^\omega) \) (then \(\text{cf}(\kappa) > \omega! \)).
Fix a Nikodym extracting family \(\mathcal{G} \subseteq [\omega]^\omega \), \(|\mathcal{G}| = n_e \).
The construction

Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}(\kappa^\omega)$ (then $\text{cf}(\kappa) > \omega$). Fix a Nikodym extracting family $G \subseteq \omega^\omega$, $|G| = n_e$.

- Start with some $B_0 \subseteq \wp(\kappa)$, $|B_0| = \kappa$.
Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}(\kappa^\omega)$ (then $\text{cf}(\kappa) > \omega$!). Fix a Nikodym extracting family $G \subseteq [\omega]^\omega$, $|G| = n_e$.

- Start with some $B_0 \subseteq \wp(\kappa)$, $|B_0| = \kappa$.
- On a successor step:
 1. take cofinal $\mathcal{F} \subseteq [B_\eta]^\omega$, $|\mathcal{F}| = \kappa$;

On a limit step take the union of preceding algebras. Continue until $A = B_\omega$ is obtained. A has the Nikodym property and cardinality κ.
The construction

Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^\omega)$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $G \subseteq [\omega]^\omega$, $|G| = n_e$.

- Start with some $B_0 \subseteq \wp(\kappa)$, $|B_0| = \kappa$.
- On a successor step:
 1. take cofinal $F \subseteq [B_\eta]^\omega$, $|F| = \kappa$;
 2. for every $A \in F$ take $\{\langle a_\gamma^n : n \in \omega \rangle : \gamma < n_a\}$ witnessing n_a-anti-Nikodymness;
Let \(\kappa \geq \max(n_a, n_e) \) be such that \(\kappa = \text{cof}(\kappa^\omega) \) (then \(\text{cf}(\kappa) > \omega! \)). Fix a Nikodym extracting family \(G \subseteq \omega^\omega, |G| = n_e \).

- Start with some \(B_0 \subseteq \wp(\kappa), |B_0| = \kappa \).
- On a successor step:
 1. take cofinal \(F \subseteq [B_\eta]^\omega, |F| = \kappa \);
 2. for every \(A \in F \) take \(\{ \langle a_\gamma^n : n \in \omega \rangle : \gamma < n_a \} \) witnessing \(n_a \)-anti-Nikodymness;
 3. put \(b_\gamma^A = \bigvee_{n \in A} a_\gamma^n \) for every \(A \in G \) and \(\gamma < n_a \);
The construction

Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^\omega)$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $\mathcal{G} \subseteq [\omega]^\omega$, $|\mathcal{G}| = n_e$.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 1. take cofinal $\mathcal{F} \subseteq [\mathcal{B}_\eta]^\omega$, $|\mathcal{F}| = \kappa$;
 2. for every $A \in \mathcal{F}$ take $\{\langle a_n^\gamma : n \in \omega \rangle : \gamma < n_a\}$ witnessing n_a-anti-Nikodymness;
 3. put $b_A^\gamma = \bigvee_{n \in A} a_n^\gamma$ for every $A \in \mathcal{G}$ and $\gamma < n_a$;
 4. put $\Phi(A) = \{b_A^\gamma : A \in \mathcal{G}, \gamma < n_a\}$;

On a limit step take the union of preceding algebras. Continue until $\mathcal{B} = \mathcal{B}_\omega$ is obtained. \mathcal{A} has the Nikodym property and cardinality κ.
The construction

Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^\omega)$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $\mathcal{G} \subseteq [\omega]^\omega$, $|\mathcal{G}| = n_e$.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 1. take cofinal $\mathcal{F} \subseteq [\mathcal{B}_\eta]^\omega$, $|\mathcal{F}| = \kappa$;
 2. for every $A \in \mathcal{F}$ take $\{ \langle a_\gamma^n : n \in \omega \rangle : \gamma < n_a \}$ witnessing n_a-anti-Nikodymness;
 3. put $b_\gamma^A = \bigvee_{n \in A} a_\gamma^n$ for every $A \in \mathcal{G}$ and $\gamma < n_a$;
 4. put $\Phi(A) = \{ b_\gamma^A : A \in \mathcal{G}, \gamma < n_a \}$;
 5. $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_\eta \cup \bigcup_{A \in \mathcal{F}} \Phi(A)$.
Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^{\omega})$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $G \subseteq [\omega]^{\omega}$, $|G| = n_e$.

- Start with some $B_0 \subseteq \wp(\kappa)$, $|B_0| = \kappa$.
- On a successor step:
 1. take cofinal $F \subseteq [B_\eta]^{\omega}$, $|F| = \kappa$;
 2. for every $A \in F$ take $\{ \langle a_\gamma^n : n \in \omega \rangle : \gamma < n_a \}$ witnessing n_a-anti-Nikodymness;
 3. put $b_A^\gamma = \bigvee_{n \in A} a_\gamma^n$ for every $A \in G$ and $\gamma < n_a$;
 4. put $\Phi(A) = \{ b_A^\gamma : A \in G, \gamma < n_a \}$;
 5. $B_{\eta+1}$ is generated by $B_\eta \cup \bigcup_{A \in F} \Phi(A)$.
- On a limit step take the union of preceding algebras.
The construction

Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}([\kappa]^\omega)$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $\mathcal{G} \subseteq [\omega]^\omega$, $|\mathcal{G}| = n_e$.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 1. take cofinal $\mathcal{F} \subseteq [\mathcal{B}_\eta]^\omega$, $|\mathcal{F}| = \kappa$;
 2. for every $A \in \mathcal{F}$ take $\{\langle a_n^\gamma : n \in \omega \rangle : \gamma < n_a\}$ witnessing n_a-anti-Nikodymness;
 3. put $b_A^\gamma = \bigvee_{n \in A} a_n^\gamma$ for every $A \in \mathcal{G}$ and $\gamma < n_a$;
 4. put $\Phi(A) = \{b_A^\gamma : A \in \mathcal{G}, \gamma < n_a\}$;
 5. $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_\eta \cup \bigcup_{A \in \mathcal{F}} \Phi(A)$.
- On a limit step take the union of preceding algebras.
- Continue until $\mathcal{A} = \mathcal{B}_{\omega_1}$ is obtained.
Let $\kappa \geq \max(n_a, n_e)$ be such that $\kappa = \text{cof}(\kappa^\omega)$ (then $\text{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $G \subseteq [\omega]^\omega$, $|G| = n_e$.

- Start with some $B_0 \subseteq \wp(\kappa)$, $|B_0| = \kappa$.
- On a successor step:
 1. take cofinal $F \subseteq [B_\eta]^\omega$, $|F| = \kappa$;
 2. for every $A \in F$ take $\{\langle a_\gamma^n : n \in \omega \rangle : \gamma < n_a\}$ witnessing n_a-anti-Nikodymness;
 3. put $b_\gamma^A = \bigvee_{n \in A} a_\gamma^n$ for every $A \in G$ and $\gamma < n_a$;
 4. put $\Phi(A) = \{b_\gamma^A : A \in G, \gamma < n_a\}$;
 5. $B_{\eta+1}$ is generated by $B_\eta \cup \bigcup_{A \in F} \Phi(A)$.
- On a limit step take the union of preceding algebras.
- Continue until $A = B_{\omega_1}$ is obtained.

A has the Nikodym property and cardinality κ.

The construction
Theorem

Assume that $\max(n_a, n_e) \leq \kappa$ for a cardinal number κ such that $\text{cof}([\kappa]^{\omega}) = \kappa$. Then, there exists a Boolean algebra A with the Nikodym property and of cardinality κ.
The anti-Nikodym number n_a

$$n_a = \min \{ \kappa : \text{every ctbl } \mathcal{A} \text{ has } \kappa\text{-anti-Nikodym property} \}.$$
The anti-Nikodym number

The anti-Nikodym number \(n_a \)

\[n_a = \min \{ \kappa : \text{every ctbl } A \text{ has } \kappa \text{-anti-Nikodym property} \} . \]

The anti-Nikodym number \(n_a \) **for** \(A \)

\[n_a(A) = \min \{ \kappa : A \text{ has } \kappa \text{-anti-Nikodym property} \} . \]
The anti-Nikodym number n_a

$n_a = \min \{ \kappa : \text{every ctbl } A \text{ has } \kappa\text{-anti-Nikodym property} \}.$

The anti-Nikodym number n_a for A

$n_a(A) = \min \{ \kappa : A \text{ has } \kappa\text{-anti-Nikodym property} \}.$

Proposition

Let A, B be Boolean algebras and $h : A \rightarrow B$ an epimorphism. Then, $n_a(A) \geq n_a(B)$.
The anti-Nikodym number n_a

$n_a = \min \{ \kappa : \text{every ctbl } \mathcal{A} \text{ has } \kappa\text{-anti-Nikodym property} \}.$

The anti-Nikodym number n_a for \mathcal{A}

$n_a(\mathcal{A}) = \min \{ \kappa : \mathcal{A} \text{ has } \kappa\text{-anti-Nikodym property} \}.$

Proposition

Let \mathcal{A}, \mathcal{B} be Boolean algebras and $h : \mathcal{A} \rightarrow \mathcal{B}$ an epimorphism. Then, $n_a(\mathcal{A}) \geq n_a(\mathcal{B}).$

Corollary

For any countable \mathcal{A} we have:

$n_a(FC) \leq n_a(\mathcal{A}) \leq n_a(Fr(\omega)) = n_a.$
The anti-Nikodym number

Proposition

1. $b \leq n_a(FC) \leq \text{cof}(\mathcal{M})$.
The anti-Nikodym number

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $b \leq n_a(FC) \leq \text{cof}(\mathcal{M})$.</td>
</tr>
<tr>
<td>2 $n_a(\text{Fr}(\omega)) = n_a \leq \text{cof}(\mathcal{N})$.</td>
</tr>
</tbody>
</table>
The anti-Nikodym number

Proposition

1. $b \leq n_a(FC) \leq \text{cof}(\mathcal{M})$.
2. $n_a(\text{Fr}(\omega)) = n_a \leq \text{cof}(\mathcal{N})$.

\[\begin{array}{cccccc}
\text{cov}(\mathcal{N}) & \rightarrow & \text{non}(\mathcal{M}) & \rightarrow & \text{cof}(\mathcal{M}) & \rightarrow & \text{cof}(\mathcal{N}) \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\text{add}(\mathcal{N}) & \rightarrow & \text{add}(\mathcal{M}) & \rightarrow & \text{cov}(\mathcal{M}) & \rightarrow & \text{non}(\mathcal{N}) \\
\end{array} \]
The Nikodym extracting number

The Nikodym extracting number n_e

\[n_e = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq [\omega]^\omega \text{ is Nikodym extracting} \}. \]
The Nikodym extracting number n_e

\[n_e = \min \{|F| : F \subseteq [\omega]^\omega \text{ is Nikodym extracting} \}. \]

Definition

An ultrafilter \mathcal{U} on ω is **selective** (*Ramsey*) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The selective ultrafilter number u_s

\[u_s = \min \{|F| : F \text{ is a basis of a selective ultrafilter} \}. \]
The Nikodym extracting number

The Nikodym extracting number n_e

$$n_e = \min \{|F| : F \subseteq [\omega]^{\omega} \text{ is Nikodym extracting}\}.$$

Definition

An ultrafilter \mathcal{U} on ω is selective (**Ramsey**) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen ’76)

The existence of selective ultrafilters is undecidable in ZFC.
The Nikodym extracting number

The Nikodym extracting number n_e

$$n_e = \min \{|\mathcal{F}|: \mathcal{F} \subseteq [\omega]^{\omega} \text{ is Nikodym extracting}\}.$$

Definition

An ultrafilter \mathcal{U} on ω is selective (Ramsey) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The selective ultrafilter number u_s

$$u_s = \min \{|\mathcal{F}|: \mathcal{F} \text{ is a basis of a selective ultrafilter}\}.$$
Proposition

\[\text{cov}(\mathcal{M}) \leq n_e \leq \min(\vartheta, u_s). \]
The Nikodym extracting number

Proposition

\[\text{cov}(\mathcal{M}) \leq n_e \leq \min(\mathbb{d}, u_s). \]
Summary

Theorem

1. $b \leq n_a \leq \text{cof}(\mathcal{N})$.
2. $\text{cov}(\mathcal{M}) \leq n_e \leq \min(d, u_s)$.
3. If $\text{cof}([\kappa]^\omega) = \kappa \geq \max(n_a, n_e)$, then $n \leq \kappa$.
Theorem

1. $b \leq n_a \leq \text{cof}(\mathcal{N})$.
2. $\text{cov}(\mathcal{M}) \leq n_e \leq \min(\vartheta, u_s)$.
3. If $\text{cof}([\kappa]^\omega) = \kappa \geq \max(n_a, n_e)$, then $n \leq \kappa$.

Consistently, $n < c$.

Consistently, $n < c$.

Consequence – cofinality and homomorphism type

Definition

\[\text{cof}(A) = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \downarrow A\} \].
Consequence – cofinality and homomorphism type

Definition

\[
\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}\}.
\]

\[
h(\mathcal{A}) = \min\{|\phi(\mathcal{A})| : \phi \text{ is a homomorphism}\}.
\]
Consequence – cofinality and homomorphism type

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{cof}(\mathcal{A}) = \min{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}}).</td>
</tr>
<tr>
<td>(\text{h}(\mathcal{A}) = \min{</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Koppelberg ’77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\omega \leq \text{cof}(\mathcal{A}) \leq \text{h}(\mathcal{A}) \leq c),</td>
</tr>
</tbody>
</table>
Consequence – cofinality and homomorphism type

Definition

\[
\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_\xi : \xi < \kappa \rangle \nearrow \mathcal{A}\}.
\]

\[
h(\mathcal{A}) = \min\{|\phi(\mathcal{A})| : \phi \text{ is a homomorphism}\}.
\]

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(\mathcal{A}) \leq h(\mathcal{A}) \leq c\),
2. (MA) If \(|\mathcal{A}| < c\), then \(\text{cof}(\mathcal{A}) = h(\mathcal{A}) = \omega\).
Consequence – cofinality and homomorphism type

Definition

\[
\begin{align*}
\text{cof}(A) & = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow A\}. \\
h(A) & = \min\{|\phi(A)| : \phi \text{ is a homomorphism}\}.
\end{align*}
\]

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(A) \leq h(A) \leq c\),

2. (MA) If \(|A| < c\), then \(\text{cof}(A) = h(A) = \omega\).

Theorem (Just–Koszmider ’91)

In the Sacks model there exists a Boolean algebra \(B\) such that \(|B| = \text{cof}(B) = h(B) = \omega_1\).
Consequence – cofinality and homomorphism type

Definition

\[\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}\} \].

\[h(\mathcal{A}) = \min\{|\phi(\mathcal{A})| : \phi \text{ is a homomorphism}\} \].

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(\mathcal{A}) \leq h(\mathcal{A}) \leq c \),
2. (MA) If \(|\mathcal{A}| < c \), then \(\text{cof}(\mathcal{A}) = h(\mathcal{A}) = \omega \).

Theorem (Just–Koszmider ’91)

In the Sacks model there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = h(\mathcal{B}) = \omega_1 \).

Theorem (Pawlikowski–Ciesielski ’02)

Assuming \(\text{cof}(\mathcal{N}) = \omega_1 \), there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1 \).
Theorem (Schachermayer '82)

If \(A \) *has the Nikodym property, then* \(\text{cof}(A) > \omega \).*
Theorem (Schachermayer ’82)

\[\text{If } \mathcal{A} \text{ has the Nikodym property, then } \text{cof}(\mathcal{A}) > \omega. \]

Corollary

Assuming \(\text{cof}(\mathcal{N}) \leq \kappa = \text{cof}([\kappa]^{\omega}) \), there exists a Boolean algebra \(\mathcal{A} \) such that \(|\mathcal{A}| = \kappa \), \(h(\mathcal{A}) \geq \aleph \) and \(\text{cof}(\mathcal{A}) = \omega_1 \).
Consequence – cofinality of Boolean algebras

Theorem (Schachermayer ’82)

*If \mathcal{A} has the Nikodym property, then $\text{cof}(\mathcal{A}) > \omega$.***

Corollary

Assuming $\text{cof}(\mathcal{N}) \leq \kappa = \text{cof}([\kappa]^{\omega})$, there exists a Boolean algebra \mathcal{A} such that $|\mathcal{A}| = \kappa$, $h(\mathcal{A}) \geq n$ and $\text{cof}(\mathcal{A}) = \omega_1$.

An old open question

Is there a consistent example of a Boolean algebra \mathcal{B} for which $\omega_1 < \text{cof}(\mathcal{B}) < c$?
Definition

An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta\omega$.
Consequence – the Efimov problem

Definition
An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem ’69
Does there exist a Efimov space?
Consequence – the Efimov problem

Definition
An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem ’69
Does there exist a Efimov space?

Fedorčuk: CH, \diamondsuit, $s = \omega_1$ & $c = 2^{\omega_1}$
Dow: $\text{cof}([s]^\omega) = s$ & $2^s < 2^c$
and many more...
Definition
An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem ’69
Does there exist a Efimov space?

Fedorčuk: CH, \diamondsuit, $s = \omega_1$ & $c = 2^{\omega_1}$
Dow: $\text{cof}([s]^\omega) = s$ & $2^s < 2^c$
and many more...

Theorem
Assuming $\text{cof}(\mathcal{N}) \leq \kappa = \text{cof}([\kappa]^\omega) < c$, *there exists a Efimov space* K *such that* $w(K) = \kappa$ *and for every infinite closed subset* L *of* K *we have* $w(L) \geq \eta$.

Thank you for the attention!