On maximal connected I-spaces

Adam Bartoš
drekin@gmail.com

Faculty of Mathematics and Physics
Charles University in Prague

Winter School in Abstract Analysis
Set Theory & Topology
Hejnice, Jan 28–Feb 4 2017
Maximal connected spaces

Definition

A topological space is called

- **maximal connected** [Thomas, 1968] if it is connected and has no connected strict expansion;
- **essentially connected** [Guthrie–Stone, 1973] if it is connected and every connected expansion has the same connected subsets.
Maximal connected spaces

Facts

- The real line is essentially connected [Hildebrand, 1967] and it has a maximal connected expansion [Simon, 1978], [Guthrie–Stone–Wage, 1978].

- No Hausdorff connected space with a dispersion point has a maximal connected expansion. [Guthrie–Stone, 1973]

- There are Hausdorff maximal connected spaces, but it is not known whether there are nondegenerate regular maximal connected spaces.
Implications between the classes

Definition

Recall the following properties of a topological space X.

- X is *submaximal* if every its dense subset is open.
- X is *nodec* if every its nowhere dense subset is closed.
- X is *irresolvable* if it has no two disjoint dense subsets.
- X is $T_{\frac{1}{2}}$ if every its singleton is open or closed.

We have the following implications.

- Maximal connected \rightarrow Submaximal \rightarrow Nodec
- Essentially connected \rightarrow $T_{\frac{1}{2}}$ \rightarrow Hereditarily irresolvable
A topological space X is called *finitely generated* or *Alexandrov* if every intersection of open sets is open. Equivalently, if

$$\overline{A} = \bigcup_{x \in A} \{x\}$$

for every $A \subseteq X$.
[Thomas, 1968] characterized finitely generated maximal connected spaces, we may reformulate the characterization as follows.

Proposition

Let X be a finitely generated $T_{\frac{1}{2}}$ space. Let $I(X)$ be the set of all isolated points.

- The topology is uniquely determined by the bipartite graph G_X with bipartition $\langle I(X), X \setminus I(X) \rangle$ and with an edge between $x \in I(X)$ and $y \in X \setminus I(X)$ if and only if $\{x\} \ni y$.
- X is connected $\iff G_X$ is connected as a graph.
- X is maximal connected $\iff G_X$ is a tree.

Therefore, finitely generated maximal connected spaces correspond to trees with fixed ordered bipartition.
Finitely generated maximal connected spaces

Figure: Examples of finitely generated maximal connected spaces.
Finitely generated maximal connected spaces

Figure: All nondegenerate maximal connected spaces with at most five elements.
I-spaces

Definition

Let X be a topological space. By $I(X)$ we denote the set of all isolated points of X.

- X is an *I-space* if $X \setminus I(X)$ is discrete.
- X is *I-dense* if $I(X) = X$.
- X is *I-flavored* if $I(X) \setminus I(X)$ is discrete.

I-spaces were considered in [Arhangel’skii–Collins, 1995].

We are interested in *maximal connected I-spaces*, a class containing finitely generated maximal connected spaces.
We have the following implications between the classes.

- The red part is a meet semilattice with respect to conjunction.
The green part collapses in the realm of maximal connected spaces.
Definition

Let \(\langle X_i : i \in I \rangle \) be an indexed family of topological spaces, \(\sim \) an equivalence on \(\sum_{i \in I} X_i \), and \(X := \sum_{i \in I} X_i / \sim \). We consider

- the canonical maps \(e_i : X_i \rightarrow X \),
- the canonical quotient map \(q : \sum_{i \in I} X_i \rightarrow X \),
- the set of gluing points \(S_X := \{ x \in X : |q^{-1}(x)| > 1 \} \),
- the gluing graph \(G_X \) with vertices \(I \sqcup S_X \) and edges of from \(s \rightarrow_x i \) where \(s \in S_X, i \in I \), and \(x \in X_i \) such that \(e_i(x) = s \).

We say that \(X \) is a tree sum if \(G_X \) is a tree, i.e. for every pair of distinct vertices there is a unique undirected path connecting them.

We just glue topological spaces in a way that the spaces are preserved, two spaces may be glued only at one point, and the global structure of connections forms a tree.
Proposition

A topological space X is naturally homeomorphic to a tree sum of a family of its subspaces $\langle X_i : i \in I \rangle$ if and only if the following conditions hold.

1. $\bigcup_{i \in I} X_i = X$,
2. X is inductively generated by embeddings $\{ e_i : X_i \to X \}_{i \in I}$,
3. G is a tree, where G is the graph on $S \sqcup I$ satisfying
 - $S := \{ x \in X : |\{ i \in I : x \in X_i \}| \geq 2 \}$,
 - $s \to i$ is an edge if and only if $s \in S$, $i \in I$, and $s \in X_i$.
Definition

- We say that $A \subseteq X$ is an I-subset of X if it is a union of an open discrete subset and a closed discrete subset of X.
- We say that (the gluing of) a tree sum is I-compatible if we never glue an isolated point to a non-isolated point.

Theorem [B.]

Let X be a tree sum of nondegenerate spaces $\langle X_i : i \in I \rangle$. The following conditions are equivalent.

1. X is maximal connected.
2. Every X_i is maximal connected and S_X is an I-subset of X.
3. Every X_i is maximal connected, $S_X \cap X_i$ is an I-subset of X_i for every $i \in I$, and the gluing is I-compatible.
4. Every X_i is maximal connected and X is essentially connected.
Proposition

Let X be an I-compatible tree sum of spaces $\langle X_i : i \in I \rangle$. We have that X is P if and only if every X_i is P where P is

- “finitely generated”,
- “an I-space”,
- “finitely generated maximal connected”,
- “a maximal connected I-space”.

Corollary

Besides the one-point space, finitely generated maximal connected spaces are exactly I-compatible tree sums of copies of the Sierpiński space.
There is a standard way of adding a closed discrete set.

Definition

Let X be a topological space, Y a set disjoint with X, and
$\mathcal{F} = \langle \mathcal{F}_y : y \in Y \rangle$ an indexed family of open filters on X. Let \hat{X} be the space with universe $X \cup Y$ and the following topology:

$$A \subseteq \hat{X} \text{ is open } \iff \begin{cases} A \cap X \text{ is open in } X, \\ A \cap X \in \mathcal{F}_y \text{ for every } y \in A \cap Y. \end{cases}$$

- The space \hat{X} is called the **OF-extension** of X by \mathcal{F}.
- If every \mathcal{F}_y is maximal, then \hat{X} is called **MOF-extension**.
- If every \mathcal{F}_y contains $I(X)$, then \hat{X} is called **I-extension**.
- If both conditions hold, then \hat{X} is called **ultrafilter I-extension**.
Remarks

- Let \(X \subseteq \hat{X} \) be topological spaces. \(\hat{X} \) is an OF-extension of \(X \) if and only if \(X \) is open dense and \(\hat{X} \setminus X \) is closed discrete nowhere dense in \(\hat{X} \).

- For I-extensions we may view the open filters \(\mathcal{F}_y \) containing \(I(X) \) as ordinary filters on \(I(X) \). Maximal open filters containing \(I(X) \) correspond to ultrafilters on \(I(X) \).

- I-spaces are precisely I-extensions of discrete spaces.

- OF-extensions preserve connectedness.
Proposition

Let X be a maximal connected space. For every connected $A \subseteq X$ we have that \overline{A} is a MOF-extension of A.

Sketch of proof.

- Both A and \overline{A} are maximal connected.
- A is open dense in \overline{A} and $\overline{A} \setminus A$ is closed discreet.
- \overline{A} is an OF-extension of A.
- The extending filters have to be maximal.
OF-extensions and maximal connectedness

Observation

A topological space is open-hereditarily irresolvable if and only if \(\text{int}(A) \cup \text{int}(B) \) is dense for every its decomposition \(\langle A, B \rangle \).

Proposition

An OF-extension \(\langle \hat{X}, \tau \rangle \) of a maximal connected space \(X \) by a family of filters \(\langle F_y : y \in Y \rangle \) is maximal connected if and only if it is a MOF-extension of \(X \).

Sketch of proof of “\(\Leftarrow \)”:

- Let \(A \subseteq X \) be non-open, \(\tau^* := \tau \cup \{A\} \).
- WLOG \(A \subseteq X \), and so \(\tau^* \upharpoonright X \) is disconnected.
- Let \(\langle U, V \rangle \) be a \((\tau^* \upharpoonright X) \)-clopen decomposition of \(X \).
- \(\text{int}_\tau(U) \cup \text{int}_\tau(V) \) is \(\tau \)-dense.
- Every maximal filter \(F_y \) contains exactly one of \(U, V \).
- \(\langle \overline{U}^{\tau^*}, \overline{V}^{\tau^*} \rangle \) is a \(\tau^* \)-clopen decomposition of \(\hat{X} \).
Proposition

An OF-extension of a topological space X is an I-space if and only if it an I-extension and X is an I-space.

Corollary

Let X be a maximal connected I-space.

- An OF-extension of X is a maximal connected I-space if and only if it is an ultrafilter I-extension.
- \bar{A} is an ultrafilter I-extension of A for every connected $A \subseteq X$.
We have described two constructions that preserve the property of being maximal connected I-space:

- I-compatible tree sums,
- ultrafilter I-extensions.

Therefore, we may build various maximal connected I-spaces inductively using the constructions.

Next we shall show how to deconstruct a maximal connected I-space in order to see whether it was inductively built using the constructions.
Intersections of connected subsets

We will need the following results.

Theorem [Neumann-Lara, Wilson; 1986]

Let X be an **essentially connected** space. If $A, B \subseteq X$ are connected, then $A \cap B$ is connected as well.

Corollary

Let X be an **maximal connected** space. If $A, B \subseteq X$ are disjoint and connected, then $|\overline{A} \cap \overline{B}| \leq 1$.

Proof.

We have $\overline{A} \cap \overline{B} \subseteq (\overline{A} \setminus A) \cup (\overline{B} \setminus B)$, which is a closed discrete set since X is submaximal.
Towards characterization of maximal connected I-spaces

Definition

Let X be a maximal connected space, let \mathcal{D} be a decomposition of X into connected subspaces.

- We define a graph $G_\mathcal{D}$ as follows: the vertices are the members of \mathcal{D} and for $D \neq D' \in \mathcal{D}$ and $x \in X$, there is an edge $D \rightarrow_x D'$ if and only if $\overline{D} \cap D' \ni x$.
- We put $\mathcal{D}^+ := \{ \bigcup C : C$ is an undirected component of $G_\mathcal{D} \}$.

Proposition

Given the objects above, let $D \in \mathcal{D}^+$ and let \mathcal{C} be the component of $G_\mathcal{D}$ such that $D = \bigcup \mathcal{C}$. We have that $G \upharpoonright \mathcal{C}$ is a tree and D is the tree sum of its subspaces $\{ \overline{C} : C \in \mathcal{C} \}$ with closed discrete set of gluing points.
Towards characterization of maximal connected I-spaces

Definition

Let X be a maximal connected space. We inductively define decompositions D_α and corresponding equivalences E_α for every α.

- $D_0 := \{\{x\} : x \in X\}$,
- $D_{\alpha+1} := D_\alpha$
- $E_\alpha := \bigcup_{\beta<\alpha} E_\beta$ for limit α.

We denote the smallest α such that $D_\alpha = D_{\alpha+1}$ by $\rho(X)$.
Towards characterization of maximal connected I-spaces

Theorem

In the situation above suppose that X is a maximal connected I-space. Let $D \in \mathcal{D}_\alpha$ for some α.

1. D is an I-compatible tree sum of ultrafilter I-extensions of some members of \mathcal{D}_β if $\alpha = \beta + 1$. The ultrafilters are principal if $\beta = 0$, free otherwise.

2. D is the direct limit of $\{ C \in \bigcup_{\beta < \alpha} \mathcal{D}_\alpha : C \subseteq D \}$ if α is limit.

Therefore, the members of $\mathcal{D}_{\rho(X)}$ are obtained by iteratively forming tree sums of ultrafilter I-extensions.

Proposition

Every maximal connected space having only finitely many nonisolated points is an I-space satisfying $|\mathcal{D}_1| < \omega$ and $|\mathcal{D}_2| \leq 1$. Therefore, it is a finite tree sum of free ultrafilter I-extensions of finitely generated maximal connected spaces.
Because of the previous results, a maximal connected I-space X such that $|D_{\rho(X)}| \leq 1$ may be called *inductive*. We shall conclude with an example of a non-inductive maximal connected I-space.

Example

Let $f : X \rightarrow Y$ be a bijection between two disjoint sets, let \mathcal{U} be a free ultrafilter on X. Let \hat{X} be the I-extension of X with discrete topology by the family $\langle \mathcal{F}_y : y \in Y \rangle$ where

$$\mathcal{F}_y := \{ U \in \mathcal{U} : f^{-1}(y) \in U \}$$

for every $y \in Y$.

The space \hat{X} is an example of a non-inductive maximal connected I-space.

Thank you for your attention.

Highlights

- We are interested in *maximal connected spaces*.
- *Finitely generated* maximal connected spaces were characterized.
- Characterizing *maximal connected I-spaces* would generalize this.
- Constructions of *I-compatible tree sum* and *ultrafilter I-extension* preserve the property of being maximal connected I-space. We can build spaces inductively.
- Starting with points and considering how closures intersect, we obtain a *sequence of coarsening decompositions* into inductive connected subspaces.
- Not every maximal connected I-space is *inductive*.