Universal sets for σ-ideals

Marcin Michalski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2017, section Set Theory and Topology
28.01 - 04.02.2017, Hejnice
Let X be a Polish space, ω^ω denote the Baire space.

Definition

We say that a set $U \subseteq X \times \omega^\omega$ is universal for a family of sets $\mathcal{F} \subseteq P(X)$ if for every $F \in \mathcal{F}$ there exists $y \in \omega^\omega$ such that

$$U^y = \{x \in X : (x, y) \in U\} = F$$
Let X be a Polish space, ω^ω denote the Baire space.

Definition

We say that a set $U \subseteq X \times \omega^\omega$ is universal for a family of sets $\mathcal{F} \subseteq P(X)$ if for every $F \in \mathcal{F}$ there exists $y \in \omega^\omega$ such that

$$U^y = \{x \in X : (x, y) \in U\} = F$$

Widely known facts are that for each $\alpha < \omega_1$ there exists a universal Σ^0_α set for the family of Σ^0_α sets and that there exists an analytic universal set for a family of analytic sets.
Let $\mathcal{I} \subseteq P(X)$ be a nontrivial σ-ideal possessing a Borel base.

Definition

We say that a set $U \subseteq X \times \omega^\omega$ is universal for the σ-ideal \mathcal{I} if a family of horizontal slices $\{U^y : y \in \omega^\omega\}$ is a Borel base of \mathcal{I}.

We are interested in finding universal sets of possibly low complexity.
Theorem

There are Borel universal sets of minimal complexity for

- \mathcal{M} - a family of meager sets;
- \mathcal{N} - a family of null subsets of 2^ω;
- \mathcal{E} - a σ-ideal generated by closed null subsets of 2^ω;
- σ-ideal of countable sets.
Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega$ for open and dense subsets of X.

$\{B_n \mid n \in \omega\}$ - enumeration of basic open sets.

Let us define $K : \omega \times \omega \to \omega$ in the following way:

$K(n,0) = \min\{k \mid B_k \subseteq B_n\}$,

$K(n,m+1) = \min\{k \mid B_k \subseteq B_n \land k > K(n,m)\}$.

$K(n,m)$ gives a number of the $(m+1)$-st basic open set contained in B_n with respect to our enumeration.

Let us set:

$(x,y) \in U \iff x \in \bigcup_{n \in \omega} B_{K(n,y(n))}$.
Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^\omega$ for open and dense subsets of X.

F_σ universal set for the category

Marcin Michalski

Universal sets for σ-ideals
F_σ universal set for the category

Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^\omega$ for open and dense subsets of X.

- $\{B_n : n \in \omega\}$- enumeration of basic open sets.
Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^\omega$ for open and dense subsets of X.

- $\{B_n : n \in \omega\}$- enumeration of basic open sets.
- Let us define $K : \omega \times \omega \rightarrow \omega$ in the following way:

$$K(n, 0) = \min\{k : B_k \subseteq B_n\},$$
$$K(n, m + 1) = \min\{k : B_k \subseteq B_n \land k > K(n, m)\}.$$

$K(n, m)$ gives a number of the $(m + 1)st$ basic open set contained in B_n with respect to our enumeration.
Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^\omega$ for open and dense subsets of X.

- $\{B_n : n \in \omega\}$- enumeration of basic open sets.
- Let us define $K : \omega \times \omega \rightarrow \omega$ in the following way:

$$K(n, 0) = min\{k : B_k \subseteq B_n\},$$

$$K(n, m + 1) = min\{k : B_k \subseteq B_n \wedge k > K(n, m)\}.$$

$K(n, m)$ gives a number of the $(m + 1)^{st}$ basic open set contained in B_n with respect to our enumeration.

- Let us set:

$$(x, y) \in U \iff x \in \bigcup_{n \in \omega} B_{K(n, y(n))}.$$
Now let us fix a bijection $\omega \times \omega$ and set a homeomorphism $h : \omega^\omega \to \omega^{\omega^\omega}$ given by a formula:

$$(h(x)(m))(n) = x(b(m, n)),$$

for all $x \in \omega^\omega$.

G is a \mathcal{G}_δ universal set for dense \mathcal{G}_δ subsets of X, so G^c is the desired set.
Now let us fix Let b be a bijection $\omega \times \omega$ and ω and set a homeomorphism $h : \omega^\omega \to \omega^\omega$ given by a formula:

$$(h(x)(m))(n) = x(b(m, n)),$$

for all $x \in \omega^\omega$.

Finally let us define a set G:

$$(x, y) \in G \iff x \in \bigcap_{n \in \omega} U^{h(y)}(n)$$

G is a G_δ universal set for dense G_δ subsets of X, so G^c is the desired set.
\(G_\delta\) universal set for the measure
\(G_\delta\) universal set for the measure

First we will show that for every \(\epsilon > 0\) there exists a universal open set \(U_\epsilon \subseteq X \times \omega^\omega\) for open sets of measure \(\leq \epsilon\).
G_{δ} universal set for the measure

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_\epsilon \subseteq X \times \omega^\omega$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
G_δ universal set for the measure

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_\epsilon \subseteq X \times \omega^\omega$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^\omega \times \omega^\omega \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_{y(n)}\}$ be a universal open set with respect to our enumeration.
First we will show that for every $\epsilon > 0$ there exists a universal open set $U_\epsilon \subseteq X \times \omega^\omega$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ be an enumeration of basic clopen sets.
- Let $2^\omega \times \omega^\omega \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_y(n)\}$ be a universal open set with respect to our enumeration.
- Let us fix $\epsilon > 0$ and consider a set $V = \{y \in \omega^\omega : \lambda(U^y) \leq \epsilon\}$.

G_δ universal set for the measure
First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^\omega$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^\omega \times \omega^\omega \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_{y(n)}\}$ be a universal open set with respect to our enumeration.
- Let us fix $\epsilon > 0$ and consider a set $V = \{y \in \omega^\omega : \lambda(U^y) \leq \epsilon\}$.
- V is closed so there is a continuous function $f : \omega^\omega \to V$. Let us set:

$$U_{\epsilon} = (Id \times f)^{-1}[2^\omega \times V],$$

G_δ universal set for the measure
G_δ universal set for the measure

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_\epsilon \subseteq X \times \omega^\omega$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^\omega \times \omega^\omega \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_y(n)\}$ be a universal open set with respect to our enumeration.
- Let us fix $\epsilon > 0$ and consider a set $V = \{y \in \omega^\omega : \lambda(U^y) \leq \epsilon\}$.
- V is closed so there is a continuous function $f : \omega^\omega \to V$. Let us set:

$$U_\epsilon = (Id \times f)^{-1}[2^\omega \times V],$$

- Finally let us define:

$$(x, y) \in G \iff x \in \bigcap_{n \in \omega} U_{\frac{1}{n+1}}^{h(y)(n)}.$$

G is the set.
Theorem

Let us assume that the base of \mathcal{I} is contained in the class Σ^0_α and let U be universal Σ^0_α set for Σ^0_α sets. Then if a set $\{y \in \omega^\omega : B^y \in \mathcal{I}\}$ is analytic, then there is a universal Σ^0_α set for \mathcal{I}. The same holds for the class Π^0_α.
Thank you for your attention!