Extending Baire-one functions on compact spaces

Olena Karlova

Chernivtsi National University
Definitions and notations

Let $B_1(X)$ be the collection of all Baire-one functions $f : X \rightarrow \mathbb{R}$ on a topological space X.
Definitions and notations

Let $B_1(X)$ be the collection of all Baire-one functions $f : X \to \mathbb{R}$ on a topological space X.

A subspace E of a topological space X is called

- B_1-embedded in X, if any function $f \in B_1(E)$ can be extended to a Baire-one function $g : X \to \mathbb{R}$;
Definitions and notations

Let $B_1(X)$ be the collection of all Baire-one functions $f : X \to \mathbb{R}$ on a topological space X.

A subspace E of a topological space X is called

- B_1-embedded in X, if any function $f \in B_1(E)$ can be extended to a Baire-one function $g : X \to \mathbb{R}$;
- B_1^*-embedded in X, if any bounded function $f \in B_1(E)$ can be extended to a Baire-one function $g : X \to \mathbb{R}$.

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf hereditarily Baire subset of a completely regular space X and $f : E \to \mathbb{R}$ be a Baire-one function. Then there exists a Baire-one function $g : X \to \mathbb{R}$ such that $g = f$ on E.

If A and B are disjoint dense subsets of $E = \mathbb{Q} \setminus [0, 1]$ such that $E = A \cup B$ and $X = [0, 1]$ or $X = \beta E$, then the characteristic function $f = \chi_A : E \to \mathbb{R}$ can not be extended to a Baire-one function on X.

History

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf hereditarily Baire subset of a completely regular space X and $f : E \to \mathbb{R}$ be a Baire-one function. Then there exists a Baire-one function $g : X \to \mathbb{R}$ such that $g = f$ on E.

If A and B are disjoint dense subsets of $E = \mathbb{Q} \cap [0, 1]$ such that $E = A \cup B$ and $X = [0, 1]$ or $X = \beta E$, then the characteristic function $f = \chi_A : E \to \mathbb{R}$ can not be extended to a Baire-one function on X.
A question

Question (O. Kalenda and J. Spurný, 2005)
Is any hereditarily Baire completely regular space X B_1-embedded in βX?
Let X be a topological space and (Y, d) be a metric space. A map $f : X \to Y$ is called
ε-fragmented for some $\varepsilon > 0$ if for every closed nonempty set $F \subseteq X$ there exists a nonempty relatively open set $U \subseteq F$ such that $\text{diam}f(U) < \varepsilon$;
Let X be a topological space and (Y, d) be a metric space. A map $f : X \to Y$ is called

- **ε-fragmented** for some $\varepsilon > 0$ if for every closed nonempty set $F \subseteq X$ there exists a nonempty relatively open set $U \subseteq F$ such that $\text{diam}f(U) < \varepsilon$;

- **fragmented** if f is ε-fragmented for all $\varepsilon > 0$.

Functionally fragmented maps

Proposition

Let X be a topological space, (Y, d) be a metric space and $\varepsilon > 0$. For a map $f : X \rightarrow Y$ the following conditions are equivalent:

1. f is ε-fragmented;
2. there exists a sequence $\mathcal{U} = (U_\xi : \xi \in [0, \alpha))$ in X of open sets such that
 - $\text{diam}_f(U_{\xi+1} \setminus U_\xi) < \varepsilon$ for all $\xi \in [0, \alpha)$;
 - $\emptyset = U_0 \subset U_1 \subset U_2 \subset \ldots$;
 - $U_\gamma = \bigcup_{\xi < \gamma} U_\xi$ for every limit ordinal $\gamma \in [0, \alpha)$.

Functionally fragmented maps

An ε-fragmented map $f : X \to Y$ is

\begin{itemize}
 \item \textit{functionally ε-fragmented} if \mathcal{U} can be chosen such that every U_ξ is functionally open in X;
\end{itemize}
Functionally fragmented maps

An ε-fragmented map $f : X \to Y$ is

- *functionally ε-fragmented* if U can be chosen such that every U_ξ is functionally open in X;
- *functionally ε-countably fragmented* if U can be chosen to be countable;
Functionally fragmented maps

An \(\varepsilon \)-fragmented map \(f : X \to Y \) is

- **functionally \(\varepsilon \)-fragmented** if \(\mathcal{U} \) can be chosen such that every \(U_\xi \) is functionally open in \(X \);

- **functionally \(\varepsilon \)-countably fragmented** if \(\mathcal{U} \) can be chosen to be countable;

- **functionally countably fragmented** if \(f \) is functionally \(\varepsilon \)-countably fragmented for all \(\varepsilon > 0 \).
Functionally fragmented maps

- functional countable fragmentability
- functional fragmentability
- countable fragmentability
- fragmentability
- continuity
- Baire-one
Functionally countably fragmented maps

Proposition

Let X be a topological space, (Y, d) be a metric space, $\varepsilon > 0$ and $f : X \to Y$ be a map. If

- Y is separable and f is continuous, or
- X is hereditarily Lindelöf and f is fragmented, or
- X is compact and $f \in B_1(X, Y)$,

then f is functionally countably fragmented.
Theorem (K., 2016)

Let X be a completely regular space. For a Baire-one function $f : X \to \mathbb{R}$ the following conditions are equivalent:

- f is functionally countably fragmented;
- f can be extended to a Baire-one function on βX.

Theorem (K. and V. Mykhaylyuk, 2016)

There exists a completely regular scattered (and hence hereditarily Baire) space X and a Baire-one function $f : X \to [0,1]$ which cannot be extended to a Baire-one function on βX.

Extension properties of fragmented maps
Theorem (K., 2016)

Let X be a completely regular space. For a Baire-one function $f : X \to \mathbb{R}$ the following conditions are equivalent:

- f is functionally countably fragmented;
- f can be extended to a Baire-one function on βX.

Theorem (K. and V. Mykhaylyuk, 2016)

There exists a completely regular scattered (and hence hereditarily Baire) space X and a Baire-one function $f : X \to [0, 1]$ which can not be extended to a Baire-one function on βX.
Applications of extension theorem. B_1-embedding vs. B_1^*-embedding

Theorem (K., 2013)

Let X be a hereditarily Baire space and E be a perfectly normal Lindelöf subspace with a hereditary countable π-base. Then the following conditions are equivalent:

1. E is B_1^*-embedded in X;
2. E is B_1-embedded in X.
Applications of extension theorem. B_1-embedding vs. B^*_1-embedding

Corollary 1.

For a countable subspace E of a metrizable space X the following conditions are equivalent:

1. E is B^*_1-embedded in X;
2. E is G_δ in X.
Applications of extension theorem. B_1-embedding vs. B_1^*-embedding

Corollary 1.
For a countable subspace E of a metrizable space X the following conditions are equivalent:
1. E is B_1^*-embedded in X;
2. E is $G_δ$ in X.

Corollary 2.
Any countable hereditarily irresolvable completely regular space X is B_1^*-embedded in $βX$ and is not B_1-embedded in $βX$.
Applications of extension theorem. Baire classification

Corollary 3.

Every functionally countably fragmented function $f : X \rightarrow \mathbb{R}$ defined on a topological space X is Baire-one.
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]

- Functional countable fragmentability
- Functional fragmentability
- Fragmentability
- Countable fragmentability
- Baire-one
- Continuity
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]

- functional countable fragmentability
- functional fragmentability
- fragmentability
- countable fragmentability
- Baire-one
- continuity
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]

- Functional countable fragmentability
- Functional fragmentability
- Fragmentability
- Countable fragmentability
- Baire-one
- Continuity

\[X \text{ is hereditarily Baire} \]
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]
Applications of extension theorem. Baire classification

\[Y = \mathbb{R} \]