Let \(B_1(X) \) be the collection of all Baire-one functions on a topological space \(X \).

A subspace \(E \) of a topological space \(X \) is called \(B_1 \)-embedded (\(B_1^* \)-embedded) in \(X \), if any (bounded) function \(f \in B_1(E) \) can be extended to \(g \in B_1(X) \); \(1 \)-embedded in \(X \), if any functionally \(G_\delta \)-set in \(E \) can be extended to a functionally \(G_\delta \)-set in \(X \); ambiguously \(1 \)-embedded in \(X \), if any functionally ambiguous set in \(E \) can be extended to a functionally ambiguous set in \(X \); well \(1 \)-embedded in \(X \), if for any functionally \(G_\delta \)-set \(A \subseteq X \) disjoint with \(E \) there exists a function \(f \in B_1(X) \) such that \(E \subseteq f^{-1}(0) \) and \(A \subseteq f^{-1}(1) \).

We show that a subspace \(E \) of a topological space \(X \) is \(B_1^* \)-embedded in \(X \) if and only if \(E \) is ambiguously \(1 \)-embedded in \(X \). We prove that \(E \) is \(B_1 \)-embedded in \(X \) if and only if \(E \) is \(1 \)-embedded and well \(1 \)-embedded in \(X \). Moreover, any countable hereditarily irresolvable completely regular space is \(B_1^* \)-embedded in \(\beta X \) and is not \(B_1 \)-embedded in \(\beta X \).

Recall that a function \(f : X \to \mathbb{R} \) is fragmented if for every \(\varepsilon > 0 \) and for every closed nonempty set \(F \subseteq X \) there exists a nonempty relatively open set \(U \subseteq F \) such that \(\text{diam} f(U) < \varepsilon \). Notice that every Baire-one real-valued function defined on a hereditarily Baire space is fragmented. We prove that any fragmented function defined on a countable completely regular space \(X \) can be extended to a Baire-one function defined on \(\beta X \).