Iterated forcing with side conditions

David Asperó

University of East Anglia

WS2017

Hejnice, 29/01–03/02 2017
Properness

(Shelah) A forcing notion \mathcal{P} is proper iff for every cardinal $\theta > |\mathcal{P}|$, every countable $N \prec H(\theta)$ such that $\mathcal{P} \in N$ and every $p \in N \cap \mathcal{P}$ there is some $q \leq p$ such that

$$q \Vdash_{\mathcal{P}} D \cap \dot{G} \cap N \neq \emptyset$$

for every dense $D \subseteq \mathcal{P}$ such that $D \in N$.

We say that q is (N, \mathcal{P})–generic.

Note: \mathcal{P} is proper iff the above holds for some $\theta > |\mathcal{P}|$.

Proper forcing is nice:

- Proper forcing notions preserve ω_1.
- Properness is preserved under countable support (CS) iterations.

Hence, granted the existence of a supercompact cardinal, one can build a model of PFA, the forcing axiom for proper forcings relative to collection of \aleph_1–many dense series (Baumgartner).

PFA: For every proper \mathcal{P} and for every collection $\{D_i : i < \omega_1\}$ of dense subsets of \mathcal{P} there is a filter $G \subseteq \mathcal{P}$ such that $G \cap D_i \neq \emptyset$ for all i.
PFA has many consequences. One of them is $2^{\aleph_0} = \aleph_2$.

Problem: Force some consequence of PFA or, for that matter, something we can force by iterating non–c.c.c. proper forcing, together with $2^{\aleph_0} > \aleph_2$.
Countable support iterations won’t do. In fact, at stages of uncountable cofinality we are adding generics, over all previous models, for $\text{Add}(1, \omega_1)$ (= adding a Cohen subset of ω_1); in particular we are collapsing the continuum of all those previous models to \aleph_1. Hence, in the final model necessarily $2^{\aleph_0} \leq \aleph_2$.

Bigger support won’t work either: The preservation lemma for properness doesn’t work in the present context.

Finite support iterations won’t work either; in fact, any finite support ω–length iteration of non–c.c.c. forcings collapses ω_1.
Side conditions

Rough idea: We’re interested in forcing with a non-proper \mathcal{P}, and we would really like it to be proper. We can look at some similar forcing \mathcal{P}^* which incorporates countable models as side conditions and is thereby proper.

First example perhaps Baumgartner’s forcing for adding a club of ω_1 with finite condition.

Method made explicit in work of Todorčević from the 1980’s.
Typical examples: Conditions in \(\mathcal{P}^* \) are pairs of the form \((w, \mathcal{N})\), where

- \(w \) is the *working part* (adding the object we are ultimately interested in).
- \(\mathcal{N} \) is a finite \(\in \)-chain (i.e., can be ordered as \((N_i)_{i < n}\) with \(N_i \in N_{i+1} \) for all \(i \)) of elementary submodels of some suitable \(H(\chi) \) containing all relevant objects.
- \(w \) is “generic for all members of \(\mathcal{N} \”).

Extension: \((w_1, \mathcal{N}_1) \leq (w_0, \mathcal{N}_0)\) iff

- \(w_1 \) extends \(w_0 \) (in some natural way), and
- \(\mathcal{N}_0 \subseteq \mathcal{N}_1 \).
Typical proof of properness:

- Start with \((w, N) \in N, N \text{ countable}, N \prec H(\theta)\) for large enough \(\theta\).
- **Add** \(N \cap H(\chi)\) **to** \((w, N)\). That is, build \((\tilde{w}, N \cup \{N \cap H(\chi)\})\), where \(\tilde{w}\) is perhaps some extension of \(w\).
- Prove that \((\tilde{w}, N \cup \{N \cap H(\chi)\})\) is \((N, \mathcal{P}^*)\)-generic.
Example: Measuring one club–sequence by finite conditions.

Weak Club Guessing at ω_1 (WCG):
There is a ladder system $(C_\delta : \delta \in \text{Lim}(\omega_1))$ (i.e., for all δ, $C_\delta \subseteq \delta$ is cofinal in δ and of order type ω) such that for every club $D \subseteq \omega_1$ there is some δ such that $|D \cap C_\delta| = \aleph_0$.

WCG is a very weak version of Jensen’s ♦.
Killing one instance of WCG:

Let \(\mathcal{C} = (C_\delta : \delta \in \text{Lim}(\omega_1)) \) ladder system. Let \(\mathcal{P}_\mathcal{C} \) be as follows: Conditions are pairs \((f, b)\) such that

1. \(f \subseteq \omega_1 \times \text{Lim}(\omega_1) \) is a finite function that can be extended to a strictly increasing and continuous function \(F : \omega_1 \rightarrow \text{Lim}(\omega_1) \).
2. \(\text{dom}(b) = \text{dom}(f) \) and \(b(\xi) < f(\xi) \) for each \(\xi \in \text{dom}(b) \).
3. For each \(\xi \in \text{dom}(b) \), \(C_{f(\xi)} \cap \text{range}(f \upharpoonright \xi) \subseteq b(\xi) \).

Extension: \((f_1, b_1) \leq (f_0, b_0)\) iff
 - \(f_0 \subseteq f_1 \) and
 - \(b_0 \subseteq b_1 \).

(This is the natural version of Baumgartner’s forcing for adding a club with finite conditions incorporating promises to avoid relevant \(C_\delta \)'s.)
\(\mathcal{P}_\mathcal{C} \) is proper:

Let \((f, b) \in N\), where \(N \prec H(\theta)\) for quite large \(\theta\).
Let \(\delta_N = N \cap \omega_1 \in \omega_1\). Then \((f \cup \{\delta_N, \delta_N\}, b)\) is \((N, \mathcal{P}_\mathcal{C})\)–generic:

Let \((f', b')\) extend \((f \cup \{\delta_N, \delta_N\}, b)\) and let \(D \subseteq \mathcal{P}\) dense and open, \(D \in N\). By extending \((f', b')\) if necessary we may assume \((f', b') \in D\).

Note: \(f' \uparrow \delta_N\), \(b' \uparrow \delta_N \in N\). In \(N\) pick \(\theta_0\) large enough and let \((M_\nu)_{\nu < \omega_1} \subseteq \)–continuous chain of countable elementary substructures of \(H(\theta_0)\) containing \(f' \uparrow \delta_N\), \(b' \uparrow \delta_N\) and \(D\).
\((\delta_{M_\nu})_{\nu<\delta_N}\) is a club of \(\delta_N\) of order type \(\delta_N\). Hence we may find \(\nu\) such that \(\delta_{M_\nu} \notin C_{\delta_N}\) and \(\delta_{M_\nu} \notin C_{f'_i(\delta)}\) for any \(\delta \in \text{dom}(f')\) above \(\delta_N\). There is also \(\eta < \delta_{M_\nu}\) such that \([\eta, \delta_{M_\nu}) \cap C_{\delta_N} = \emptyset\) and \([\eta, \delta_{M_\nu}) \cap C_{f'_i(\delta)} = \emptyset\) for any \(\delta \in \text{dom}(f')\) above \(\delta_N\).

Now work inside \(M_\nu\). By correctness, there is, in \(M_\nu\), a condition \((\bar{f}, \bar{b}) \in D\) extending \((f' \upharpoonright \delta_N, b' \upharpoonright \delta_N)\) and such that
\[
\min(\bar{f} \setminus (f' \upharpoonright \delta_N)) > \eta
\]
(as witnessed by \((f', b')\) itself!).

Finally, \((f' \cup \bar{f}, b' \cup \bar{b})\) is a \(P^-\)–condition extending both \((f', b')\) and \((\bar{f}, \bar{b})\).

\(\square\)

Remark: In above proof, going from \((f, b)\) to \((f \cup \{(\delta_N, \delta_N)\}, b)\) can be seen as implicitly “adding \(N\) as side condition”.

Note: It follows from the above that PFA implies \(\neg\text{WCG}\).
\((\delta_{M_\nu})_{\nu<\delta_N}\) is a club of \(\delta_N\) of order type \(\delta_N\). Hence we may find \(\nu\) such that \(\delta_{M_\nu} \notin C_{\delta_N}\) and \(\delta_{M_\nu} \notin C_{f'(\delta)}\) for any \(\delta \in \text{dom}(f')\) above \(\delta_N\). There is also \(\eta < \delta_{M_\nu}\) such that \([\eta, \delta_{M_\nu}) \cap C_{\delta_N} = \emptyset\) and \([\eta, \delta_{M_\nu}) \cap C_{f'(\delta)} = \emptyset\) for any \(\delta \in \text{dom}(f')\) above \(\delta_N\).

Now work inside \(M_\nu\). By correctness, there is, in \(M_\nu\), a condition \((\bar{f}, \bar{b}) \in D\) extending \((f' \upharpoonright \delta_N, b' \upharpoonright \delta_N)\) and such that \(\min(\bar{f} \setminus (f' \upharpoonright \delta_n)) > \eta\) (as witnessed by \((f', b')\) itself!).

Finally, \((f' \cup \bar{f}, b' \cup \bar{b})\) is a \(\mathcal{P}_{\mathcal{C}}\)–condition extending both \((f', b')\) and \((\bar{f}, \bar{b})\). □

\textbf{Remark:} In above proof, going from \((f, b)\) to \((f \cup \{(\delta_N, \delta_N)\}, b)\) can be seen as implicitly “adding \(\mathcal{N}\) as side condition”.

\textbf{Note:} It follows from the above that PFA implies \(\neg\text{WCG}\).
$(\delta_{M_{\nu}})_{\nu < \delta_N}$ is a club of δ_N of order type δ_N. Hence we may find ν such that $\delta_{M_{\nu}} \notin C_{\delta_N}$ and $\delta_{M_{\nu}} \notin C_{f'(\delta)}$ for any $\delta \in \text{dom}(f')$ above δ_N. There is also $\eta < \delta_{M_{\nu}}$ such that $[\eta, \delta_{M_{\nu}}) \cap C_{\delta_N} = \emptyset$ and $[\eta, \delta_{M_{\nu}}) \cap C_{f'(\delta)} = \emptyset$ for any $\delta \in \text{dom}(f')$ above δ_N.

Now work inside M_{ν}. By correctness, there is, in M_{ν}, a condition $(\bar{f}, \bar{b}) \in D$ extending $(f' \upharpoonright \delta_N, b' \upharpoonright \delta_N)$ and such that $\min(\bar{f} \setminus (f' \upharpoonright \delta_n)) > \eta$ (as witnessed by (f', b') itself!).

Finally, $(f' \cup \bar{f}, b' \cup \bar{b})$ is a $\mathcal{P}_{\mathcal{C}}$–condition extending both (f', b') and (\bar{f}, \bar{b}). □

Remark: In above proof, going from (f, b) to $(f \cup \{((\delta_N, \delta_N)), b\}$ can be seen as implicitly “adding N as side condition”.

Note: It follows from the above that PFA implies \negWCG.
$(\delta_{M_\nu})_{\nu < \delta_N}$ is a club of δ_N of order type δ_N. Hence we may find ν such that $\delta_{M_\nu} \notin C_{\delta_N}$ and $\delta_{M_\nu} \notin C_{f'(\delta)}$ for any $\delta \in \text{dom}(f')$ above δ_N. There is also $\eta < \delta_{M_\nu}$ such that $[\eta, \delta_{M_\nu}) \cap C_{\delta_N} = \emptyset$ and $[\eta, \delta_{M_\nu}) \cap C_{f'(\delta)} = \emptyset$ for any $\delta \in \text{dom}(f')$ above δ_N.

Now work inside M_ν. By correctness, there is, in M_ν, a condition $(\bar{f}, \bar{b}) \in D$ extending $(f' \upharpoonright \delta_N, b' \upharpoonright \delta_N)$ and such that $\min(\bar{f} \setminus (f' \upharpoonright \delta_n)) > \eta$ (as witnessed by (f', b') itself!).

Finally, $(f' \cup \bar{f}, b' \cup \bar{b})$ is a $\mathcal{P}_{\tilde{C}}$–condition extending both (f', b') and (\bar{f}, \bar{b}). □

Remark: In above proof, going from (f, b) to $(f \cup \{(\delta_N, \delta_N)\}, b)$ can be seen as implicitly “adding N as side condition”.

Note: It follows from the above that PFA implies $\neg \text{WCG}$.
Measuring is the following statement: Suppose $\tilde{C} = (C_\delta : \delta \in \text{Lim}(\omega_1))$ is such that each C_δ is a closed subset of δ in the order topology. Then there is a club $D \subseteq \omega_1$ such that for every $\delta \in D$ there is some $\alpha < \delta$ such that either

- $(D \cap \delta) \setminus \alpha \subseteq C_\delta$, or else
- $(D \setminus \alpha) \cap C_\delta = \emptyset$.

We say that D measures \tilde{C}.

- Measuring is equivalent to Measuring restricted to club–sequences.

- Measuring implies \neg WCG: Let $\tilde{C} = (C_\delta : \delta \in \text{Lim}(\omega_1))$ be a ladder system. Let D be a club measuring \tilde{C}. Then D' is such that each $\delta \in D'$ has finite intersection with C_δ. Indeed, we can assume that δ is a limit point of D'. But then $D \cap \delta$ cannot have a tail contained in C_δ since it is a limit point of limit points of D and $\text{ot}(C_\delta) = \omega$. Hence $D \cap \delta$ has a tail disjoint from C_δ.
Given a set of ordinals X and an ordinal α say that

- $\text{rank}(X, \alpha) > 0$ iff α is a limit point of ordinals in X, and
- if $\rho > 1$, then $\text{rank}(X, \alpha) \geq \rho$ iff for every $\rho' < \rho$, α is a limit point of ordinals β such that $\text{rank}(X, \beta) \geq \rho'$.
Measuring one club–sequence with finite conditions:

Let \(\tilde{C} = (C_\delta : \delta \in \text{Lim}(\omega_1)) \) club–sequence. Let \(\mathcal{P}_{\tilde{C}} \) be as follows: Conditions are triples \((f, b, \mathcal{N})\) such that

1. \(f \subseteq \omega_1 \times \text{Lim}(\omega_1) \) is a finite function.
2. \(\text{dom}(b) \subseteq \text{dom}(f) \) and \(b(\xi) < f(\xi) \) for each \(\xi \in \text{dom}(b) \).
3. For each \(\xi \in \text{dom}(b) \), \(C_{f(\xi)} \cap \text{range}(f \upharpoonright \xi) \subseteq b(\xi) \).
4. \(\mathcal{N} \) is a finite \(\in \)–chain of countable elementary submodels of \(H(\omega_2) \).
5. The following holds for every \(\nu \in \text{dom}(f) \).
 5.1. For every \(N \in \mathcal{N} \) such that \(\delta_N \leq f(\nu) \) and every club \(C \subseteq \omega_1 \) in \(N \), \(\text{rank}(C, f(\nu)) \geq \nu \).
 5.2. If \(\nu \in \text{dom}(b) \), then for every \(N \in \mathcal{N} \) such that \(\delta_N \leq f(\nu) \) and every club \(C \subseteq \omega_1 \) in \(N \), \(\text{rank}(C \setminus C_{f(\nu)}, f(\nu)) \geq \nu \).
6. For every \(N \in \mathcal{N} \), \((\delta_N, \delta_N) \in f \).
Extension: \((f_1, b_1, \mathcal{N}_1) \preceq (f_0, b_0, \mathcal{N}_0)\) iff

- \(f_0 \subseteq f_1\),
- \(b_0 \subseteq b_1\), and
- \(\mathcal{N}_0 \subseteq \mathcal{N}_1\).

\(\mathcal{P}_\mathcal{C}\) is proper:

Let \((f, b, \mathcal{N}) \in N\), where \(N \prec H(\theta)\) for quite large \(\theta\). Let \(\delta_\mathcal{N} = \mathcal{N} \cap \omega_1 \in \omega_1\). Then \((f \cup \{(\delta_\mathcal{N}, \delta_\mathcal{N})\}, b, \mathcal{N} \cup \{\mathcal{N} \cap H(\omega_2)\})\) is \((\mathcal{N}, \mathcal{P}_\mathcal{C})\)-generic:

Let \((f', b', \mathcal{N}')\) extend \((f \cup \{(\delta_\mathcal{N}, \delta_\mathcal{N})\}, b, \mathcal{N} \cup \{\mathcal{N} \cap H(\omega_2)\})\) and let \(D \subseteq \mathcal{P}\) dense and open, \(D \in N\). By extending \((f', b', \mathcal{N}')\) if necessary we may assume \((f', b', \mathcal{N}') \in D\).
Extension: \((f_1, b_1, N_1) \leq (f_0, b_0, N_0)\) iff

- \(f_0 \subseteq f_1\),
- \(b_0 \subseteq b_1\), and
- \(N_0 \subseteq N_1\).

\(\mathcal{P}_C\) is proper:

Let \((f, b, N) \in N\), where \(N \prec H(\theta)\) for quite large \(\theta\). Let \(\delta_N = N \cap \omega_1 \in \omega_1\). Then \((f \cup \{(\delta_N, \delta_N)\}, b, N \cup \{N \cap H(\omega_2)\})\) is \((N, \mathcal{P}_C)\)–generic:

Let \((f', b', N')\) extend \((f \cup \{(\delta_N, \delta_N)\}, b, N \cup \{N \cap H(\omega_2)\})\) and let \(D \subseteq \mathcal{P}\) dense and open, \(D \in N\). By extending \((f', b', N')\) if necessary we may assume \((f', b', N') \in D\).
Note: $f' \upharpoonright \delta_N$, $b' \upharpoonright \delta_N$, $\mathcal{N}' \cap N \in N$. In N pick θ_0 large enough and let $(M_\nu)_{\nu < \omega_1} \subseteq$–continuous chain of countable elementary substructures of $H(\theta_0)$ containing $f' \upharpoonright \delta_N$, $b' \upharpoonright \delta_N$, $\mathcal{N}' \cap N$ and D. Let $C = (\delta_{M_\nu})_{\nu < \omega_1}$.

Assume $\delta_N \in \text{dom}(b')$ (proof in the other case is easier). But then there is some ν such that $\delta_{M_\nu} \notin C_{\delta_N}$ and $\delta_M \notin C_{f(\delta')}$ for any $\delta' \in \text{dom}(b')$ such that $\delta' > \delta_N$ and $b'(\delta') < \delta_N$. By closedness of the C_{δ}’s, there is also $\eta < \delta_M$ such that $[\eta, \delta_M) \cap C_{\delta_N} = \emptyset$ and $[\eta, \delta_M) \cap C_{f'(\delta)} = \emptyset$ for any $\delta \in \text{dom}(f')$ above δ_N such that $b'(\delta') < \delta_N$.

The rest of the proof is now as in the \negWCG case. \qed
\[\mathcal{P}_{\mathcal{C}} \text{ measures } \mathcal{C}: \]

Easy: If \(G \) is \(\mathcal{P}_{\mathcal{C}} \)-generic and \(F_G = \bigcup \{ f : (f, b, \mathcal{N}) \in G \text{ for some } b, \mathcal{N} \} \), then \(\text{range}(F_G) \) is a club of \(\omega_1 \) and for each limit ordinal \(\delta \in \omega_1 \), if \(\delta \in \text{dom}(b) \) for some \((f, b, \mathcal{N}) \in G \), then a tail of \(\text{range}(F_G) \) is disjoint from \(C_{f(\delta)} \).

Now suppose there is no \((f, b, \mathcal{N}) \in G \) such that \(\delta \in \text{dom}(b) \). Pick \((f, b, \mathcal{N}) \) such that \(\delta \in \text{dom}(f) \). We may assume there is \(N \in \mathcal{N} \) with \(\delta_N \leq \delta \) and a club \(C \in N \) such that \(\text{rank}(C \setminus C_{f(\delta)}, f(\delta)) = \delta_0 < \delta \). Otherwise we would be able to extend \((f, b, \mathcal{N}) \) to \((f, b', \mathcal{N}) \) such that \(\delta \in \text{dom}(b') \). But then, if \((f', b', \mathcal{N}) \leq (f, b, \mathcal{N}) \) and \(\delta_0 \in \text{dom}(f') \), \((f', b', \mathcal{N}) \) forces that \(\text{range}(F_{\mathcal{G}}) \cap [f'(\delta_0), f(\delta)) \subseteq C_{f(\delta)} \). \(\Box \)

Hence, PFA implies Measuring.
\(\mathcal{P}_\mathcal{C} \) measures \(\mathcal{C} \):

Easy: If \(G \) is \(\mathcal{P}_\mathcal{C} \)-generic and \(F_G = \bigcup \{ f : (f, b, \mathcal{N}) \in G \text{ for some } b, \mathcal{N} \} \), then range\((F_G)\) is a club of \(\omega_1 \) and for each limit ordinal \(\delta \in \omega_1 \), if \(\delta \in \text{dom}(b) \) for some \((f, b, \mathcal{N}) \in G \), then a tail of range\((F_G)\) is disjoint from \(C_{f(\delta)} \).

Now suppose there is no \((f, b, \mathcal{N}) \in G \) such that \(\delta \in \text{dom}(b) \). Pick \((f, b, \mathcal{N}) \) such that \(\delta \in \text{dom}(f) \). We may assume there is \(N \in \mathcal{N} \) with \(\delta_N \leq \delta \) and a club \(\mathcal{C} \in N \) such that \(\text{rank}(\mathcal{C} \setminus C_{f(\delta)}, f(\delta)) = \delta_0 < \delta \). Otherwise we would be able to extend \((f, b, \mathcal{N}) \) to \((f, b', \mathcal{N}) \) such that \(\delta \in \text{dom}(b') \). But then, if \((f', b', \mathcal{N}) \leq (f, b, \mathcal{N}) \) and \(\delta_0 \in \text{dom}(f') \), \((f', b', \mathcal{N}) \) forces that range\((F'_G) \cap [f'(\delta_0), f(\delta)) \subseteq C_{f(\delta)} \). Hence, PFA implies Measuring.
\(\mathcal{P}_C \) measures \(\mathcal{C} \):

Easy: If \(G \) is \(\mathcal{P}_C \)-generic and \(F_G = \bigcup \{ f : (f, b, \mathcal{N}) \in G \text{ for some } b, \mathcal{N} \} \), then range\((F_G)\) is a club of \(\omega_1 \) and for each limit ordinal \(\delta \in \omega_1 \), if \(\delta \in \text{dom}(b) \) for some \((f, b, \mathcal{N}) \in G \), then a tail of range\((F_G)\) is disjoint from \(C_{f(\delta)} \).

Now suppose there is no \((f, b, \mathcal{N}) \in G \) such that \(\delta \in \text{dom}(b) \). Pick \((f, b, \mathcal{N}) \) such that \(\delta \in \text{dom}(f) \). We may assume there is \(N \in \mathcal{N} \) with \(\delta_N \leq \delta \) and a club \(C \in N \) such that \(\text{rank}(C \setminus C_{f(\delta)}, f(\delta)) = \delta_0 < \delta \). Otherwise we would be able to extend \((f, b, \mathcal{N}) \) to \((f, b', \mathcal{N}) \) such that \(\delta \in \text{dom}(b') \). But then, if \((f', b', \mathcal{N}) \leq (f, b, \mathcal{N}) \) and \(\delta_0 \in \text{dom}(f') \), \((f', b', \mathcal{N}) \) forces that \(\text{range}(F_G) \cap [f'(\delta_0), f(\delta)) \subseteq C_{f(\delta)} \). □

Hence, PFA implies Measuring.
We may consider the following family of strengthenings of Measuring.

Definition
Given a cardinal \(\kappa \), \(\text{Measuring}_\kappa \) holds if and only if for every family \(C \) consisting of closed subsets of \(\omega_1 \) such that \(|C| \leq \kappa \) there is a club \(D \subseteq \omega_1 \) with the property that for every \(\delta \in D \) and every \(C \in C \) there is some \(\alpha < \delta \) such that either

- \((D \cap \delta) \setminus \alpha \subseteq C \), or
- \(((D \cap \delta) \setminus \alpha) \cap C = \emptyset \).

- \(\text{Measuring}_\lambda \) implies \(\text{Measuring}_\kappa \) whenever \(\lambda < \kappa \)
- \(\text{Measuring}_{\mathbb{N}_0} \) is true in ZFC.
- \(\text{Measuring}_{\mathbb{N}_1} \) implies Measuring.
Recall that the splitting number, \mathfrak{s}, is the minimal cardinality of a splitting family, i.e., of a collection $\mathcal{X} \subseteq [\omega]^{\aleph_0}$ such that for every $Y \in [\omega]^{\aleph_0}$ there is some $X \in \mathcal{X}$ such that $X \cap Y$ and $Y \setminus X$ are both infinite.

Fact

Measuring \mathfrak{s} *is false.*

Proof.

Let $\mathcal{X} \subseteq [\omega]^{\aleph_0}$ be a splitting family. Let $(C_\delta)_{\delta \in \text{Lim}(\omega)}$ be a ladder system on ω_1 and let \mathcal{C} be the collection of all sets of the form

$$Z_\delta^X = \bigcup \{[C_\delta(n), C_\delta(n + 1)] : n \in X\} \cup \{\delta\}$$

for some $\delta \in \text{Lim}(\omega_1)$ and $X \in \mathcal{X}$. Let D be a club of ω_1, let $\delta < \omega_1$ be a limit point of D, and let

$$Y = \{n < \omega : [C_\delta(n), C_\delta(n + 1)] \cap D \neq \emptyset\}.$$ Let $X \in \mathcal{X}$ be such that $X \cap Y$ and $Y \setminus X$ are infinite. Then $Z_\delta^X \cap D$ and $D \setminus Z_\delta^X$ are both cofinal in δ. Hence, D does not measure \mathcal{C}.
The following question is open.

Question

Is $Measuring_{A_1}$ consistent?
Iterated forcing with side conditions

Recall our problem: Iterate (interesting) non–c.c.c. proper forcing while getting $2^{\aleph_0} > \aleph_2$ in the end.

Neither countable supports, nor uncountable supports nor finite supports work.
A solution: Use finite supports, together with countable elementary substructures of some $H(\theta)$ as side conditions affecting the whole iteration or initial segments of the iteration in order to ensure properness. As mentioned, the idea of using countable structures as side conditions in order to “force” a non–proper forcing to become proper is old. However, the idea of doing this in the context of actual iterations is relatively new.

Typically we will want our iteration to have the \aleph_2–c.c. (after all we are interested in 2^{\aleph_0} arbitrarily large). The natural approach of using finite \in–chains of structures won’t work, though, since we have too many structures and would therefore lose the \aleph_2–c.c. We will replace \in–chains of structures by “matrices” of structures with suitable symmetry properties. If we start with CH and consider only iterands with the \aleph_2–c.c., we may succeed.
Symmetric systems of elementary substructures

Definition
Let θ be a cardinal and $T \subseteq H(\theta)$ (such that $\bigcup T = H(\theta)$). A finite set $\mathcal{N} \subseteq [H(\theta)]^{\aleph_0}$ is a T–symmetric system iff the following holds for all $N, N_0, N_1 \in \mathcal{N}$:

1. $(N; \in, Y) \preceq (H(\theta); \in, T)$
2. If $\delta_{N_0} = \delta_{N_1}$, then there is a unique isomorphism $\psi_{N_0, N_1} : (N_0; \in, T) \longrightarrow (N_1; \in, T)$

Furthermore, ψ_{N_0, N_1} is the identity on $N_0 \cap N_1$.

3. If $\delta_{N_0} = \delta_{N_1}$ and $N \in N_0 \cap \mathcal{N}$, then $\psi_{N_0, N_1}(N) \in \mathcal{N}$.
4. If $\delta_{N_0} < \delta_{N_1}$, then there is some $N'_1 \in \mathcal{N}$ such that $\delta_{N'_1} = \delta_{N_1}$ and $N_0 \in N'_1$.
• Symmetric systems had previously been considered in (at least) work of Todorčević, Abraham–Cummings and Koszmider. Again, not in the context of forcing iterations.

• The def. of symmetric system guarantees that

\[(4)' \text{ if } N_0, N_1 \in \mathcal{N} \text{ and } \delta_{N_0} < \delta_{N_1}, \text{ then there is some } N'_0 \in N_1 \cap \mathcal{N} \text{ such that } \delta_{N'_0} = \delta_{N_0} \text{ and } N_0 \cap N_1 = N_0 \cap N'_0.\]

(In fact, \(N'_0 = \psi_{N'_1,N_1}(N_0), \) where \(N'_1 \in \mathcal{N} \) is such that \(\delta_{N'_1} = \delta_{N_1} \) and \(N_0 \in N'_1.\) This property is important in many applications. Sometimes it is enough to keep (1)–(3) and weaken (4) to (4)' . The resulting object is called partial \(T\)–symmetric system.
Two amalgamation lemmas

1st amalgamation lemma: If \mathcal{N} and \mathcal{N}' are T–symmetric systems, $(\bigcup \mathcal{N}) \cap (\bigcup \mathcal{N}') = X$, and there are enumerations $(N_i)_{i < n}$ and $(N'_i)_{i < n}$ of \mathcal{N}, \mathcal{N}', resp., for which there is an isomorphism

$$\psi : (\bigcup \mathcal{N}; \in, N_i, T, X)_{i < n} \longrightarrow (\bigcup \mathcal{N}'; \in, N'_i, T, X)_{i < n}$$

then $\mathcal{N} \cup \mathcal{N}'$ is a T–symmetric system.

2nd amalgamation lemma: Let \mathcal{N} be a T–symmetric system and $M \in \mathcal{N}$. Suppose $\mathcal{M} \in M$ is a T–symmetric system such that $\mathcal{N} \cap M \subseteq \mathcal{M}$. Let

$$\mathcal{N}^M(\mathcal{M}) = \mathcal{N} \cup \{\psi_{M, M'}(N) : N \in \mathcal{M}, M' \in \mathcal{N} : \delta_{M'} = \delta_M\}$$

Then $\mathcal{N}^M(\mathcal{M})$ is a T–symmetric system.
Corollaries Let

\[\text{Symm}_T = (\{ \mathcal{N} : \mathcal{N} \text{ \textit{T}–symmetric system}\}, \supseteq) \]

Using 1st amalgamation lemma:

Corollary 1 (CH) \(\text{Symm}_T \) is \(\aleph_2 \)-Knaster.

Using 2nd amalgamation lemma:

Corollary 2 \(\text{Symm}_T \) is strongly proper (i.e., for all \(p \in N \) there is \(q \leq p \) such that for every \(q' \leq q \), there is some \(\pi(q') \in \mathcal{P} \cap N \) such that every \(r \in N \) such that \(r \leq \pi(q') \) is compatible with \(q' \)).
Using Corollary 2 and the proof of Corollary 1:

Corollary 3 (CH) Symm\(_T\) adds new reals but preserves CH. In fact, Symm\(_T\) adds exactly \(\aleph_1\)-many reals, all of which are Cohen reals over \(V\).

Proof: Suppose, towards a contradiction, there is \(\mathcal{N}\) and a sequence \((\dot{r}_\alpha : \alpha < \omega_2)\) of nice names for subsets of \(\omega\) such that \(\mathcal{N} \models \dot{r}_\alpha \neq \dot{r}_{\alpha'}\) for all \(\alpha \neq \alpha'\). For each \(\alpha\) let \(N_\alpha = N^*_\alpha \cap H(\theta)\) for some countable \(N^*_\alpha \prec H(\chi)\) (\(\chi\) larger) containing \(T, \mathcal{N}\) and \(\dot{r}_\alpha\). Let \(N_\alpha = N \cup \{N_\alpha\}\). By CH there are \(\alpha \neq \alpha'\) such that

\[
(N_\alpha, \in, T, \dot{r}_\alpha) \cong (N_{\alpha'}, \in, T, \dot{r}_{\alpha'})
\]

and \(\psi_{N_\alpha, N_{\alpha'}}\) fixes \(N_\alpha \cap N_{\alpha'}\). Let \(\mathcal{M} = \mathcal{N} \cup \{N_\alpha, N_{\alpha'}\}\).
Then $\mathcal{M} \models \dot{r}_\alpha = \dot{r}_{\alpha'}$:

Let $\mathcal{N}' \leq \mathcal{M}$ and $n \in \omega$ such that $\mathcal{N} \models n \in \dot{r}_\alpha$. By $(\text{Symm}_T, N^*_\alpha)$–genericity of \mathcal{M}, there is some $Q \in \text{Symm}_T \cap N_\alpha$ such that r is in the antichain of \dot{r}_α forcing $n \in \dot{r}_\alpha$. Since

$$\psi_{N_\alpha, N'_{\alpha'}} : (N_\alpha, \in, T, \dot{r}_\alpha) \rightarrow (N'_{\alpha'}, \in, T, \dot{r}_{\alpha'})$$

is an isomorphism, $\psi_{N_\alpha, N'_{\alpha'}}(Q) \in \text{Symm}_T \cap N_{\alpha'}$ is in the antichain of $\dot{r}_{\alpha'}$ forcing $n \in \dot{r}_{\alpha'}$. But by symmetry, \mathcal{N}' extends $\psi_{N_\alpha, N'_{\alpha'}}(Q)$.

This shows $\mathcal{M} \models \dot{r}_\alpha \subseteq \dot{r}_{\alpha'}$, and by arguing symmetrically we show $\mathcal{M} \models \dot{r}_{\alpha'} \subseteq \dot{r}_\alpha$. \Box
Iterating: A typical construction.

Start with CH, let κ regular with $2^{<\kappa} = \kappa$. Fix suitable $T \subseteq H(\kappa)$. Let $(\mathcal{P}_\alpha : \alpha \leq \kappa)$ be such that for all α, a condition in \mathcal{P}_α is a pair $q = (F, \Delta)$ such that:

1. F is a finite function such that $\text{dom}(F) \subseteq \alpha$ ($\text{dom}(F)$ is the support of q).

2. Δ is a finite set of pairs (N, γ), where $N \in [H(\kappa)]^{\aleph_0}$, $\gamma \leq \alpha$, $\gamma \leq \sup(N \cap \kappa)$, and where $\text{dom}(\Delta)$ is a (partial) T–symmetric system (γ is the marker associated to N).

3. For all $\beta < \alpha$,

 $$q|_\beta := (F \upharpoonright \beta, \{(N, \min\{\gamma, \beta\}) : (N, \gamma) \in \Delta\})$$

is a \mathcal{P}_β–condition.
(4) For every $\xi \in \text{dom}(F)$,
\[q|_\xi \vdash_{\mathcal{P}_\xi} F(\xi) \in \Phi^*(\xi) \]
where $\Phi^*(\xi)$ is a \mathcal{P}_ξ–name for a suitable forcing, and $\Phi^*(\xi) = \Phi(\xi)$ if $\Phi(\xi)$ is a \mathcal{P}_ξ–name for a suitable forcing (and where Φ is a suitable bookkeeping function on κ).

(5) For every $\xi \in \text{dom}(F)$ and every $(N, \gamma) \in \Delta$, if $\xi \leq \gamma$ and $\xi \in N$, then
\[q|_\xi \vdash_{\mathcal{P}_\xi} F(\xi) \text{ is } (N[\dot{G}_\xi], \Phi^*(\xi))\text{–generic} \]

Given \mathcal{P}_α–conditions $q_0 = (F_0, \Delta_0)$, $q_1 = (F_1, \Delta_1)$, $q_1 \leq_\alpha q_0$ iff
(a) for every $(N, \gamma) \in \Delta_0$ there is some $\gamma' \geq \gamma$ such that $(N, \gamma') \in \Delta_1$,
(b) $\text{dom}(F_0) \subseteq \text{dom}(F_1)$, and
(c) for every $\xi \in \text{dom}(F_0)$,
\[q_0|_\xi \vdash_{\mathcal{P}_\xi} F_1(\xi) \leq_{\Phi^*(\xi)} F_0(\xi) \]
This way it is for example possible to build models of forcing axioms for classes Γ such that
\[\{ P : P \text{ c.c.c.} \} \subseteq \Gamma \subseteq \{ P : P \text{ proper} \} \text{ together with } 2^{\aleph_0} > \aleph_2. \]

[More of this later.]
Theorem

(A.–Mota (JSL 2017, to appear)) \((\text{CH})\) Let \(\kappa\) be a cardinal such that \(2^{<\kappa} = \kappa\) and \(\kappa^{\aleph_1} = \kappa\). There is then a partial order \(\mathcal{P}\) with the following properties.

1. \(\mathcal{P}\) is proper and \(\aleph_2\)-Knaster.
2. \(\mathcal{P}\) forces the following statements.

- Measuring
- \(2^\mu = \kappa\) for every infinite cardinal \(\mu < \kappa\).

This theorem answers a question of J. Moore, who asked if Measuring is compatible with \(2^{\aleph_0} > \aleph_2\).
Proof of the main theorem

Yet another notion of rank: Given sets \(N, \mathcal{X}\) and an ordinal \(\eta\), we define \(\text{rank}(\mathcal{X}, N) \geq \eta\) recursively by:

- \(\text{rank}(\mathcal{X}, N) \geq 1\) if and only if for every \(a \in N\) there is some \(M \in \mathcal{X} \cap N\) such that \(a \in M\).
- If \(\rho > 1\), then \(\text{rank}(\mathcal{X}, N) \geq \rho\) if and only if for every \(\rho' < \rho\) and every \(a \in N\) there is some \(M \in \mathcal{X} \cap N\) such that \(a \in M\) and \(\text{rank}(\mathcal{X}, M) \geq \rho'\).

Let \(\Phi : \kappa \to H(\kappa)\) be such that \(\Phi^{-1}(x)\) is unbounded in \(\kappa\) for all \(x \in H(\kappa)\). Notice that \(\Phi\) exists by \(2^{<\kappa} = \kappa\). Let also \(\triangleleft\) be a well–order of \(H((2^\kappa)^+)\).
Let \((\theta_{\alpha})_{\alpha<\kappa}\) be the sequence of cardinals defined by
\[
\theta_0 = |H((2^\kappa)^+)|^+ \quad \text{and} \quad \theta_\alpha = (2^{<\sup_{\beta<\alpha}\theta_\beta})^+ \quad \text{if} \ \alpha > 0.
\]

For each \(\alpha < \kappa\) let \(M^*_\alpha\) be the collection of all countable elementary substructures of \(H(\theta_\alpha)\) containing \(\Phi, \triangleleft\) and \((\theta_\beta)_{\beta<\alpha}\), and let
\[
M_\alpha = \{ N^* \cap H(\kappa) : N^* \in M^*_\alpha \}
\]

Let \(T^\alpha\) be the \(\triangleleft\)–first \(T \subseteq H(\kappa)\) such that for every \(N \in [H(\kappa)]^{\kappa_0}\), if \((N, \in, T \cap N) \prec (H(\kappa), \in, T)\), then \(N \in M_\alpha\).

Let also
\[
T^\alpha = \{ N \in [H(\kappa)]^{\kappa_0} : (N, \in, T^\alpha \cap N) \prec (H(\kappa), \in, T^\alpha) \}.
\]
Fact

Let $\alpha < \beta \leq \kappa$.

1. If $N^* \in \mathcal{M}_\beta^*$ and $\alpha \in N^*$, then $\mathcal{M}_\alpha^{\ast} \in N^*$ and $N^* \cap H(\kappa) \in T^\alpha$.

2. If $N, N' \in T^\beta$, $\psi : (N, \in, T^\beta \cap N) \rightarrow (N', \in, T^\beta \cap N')$ is an isomorphism, and $M \in N \cap T^\beta$, then $\psi(M) \in T^\beta$.
Our forcing \mathcal{P} will be \mathcal{P}_κ, where $(\mathcal{P}_\beta : \beta \leq \kappa)$ is the sequence of posets to be defined next.

In the following definition, and throughout the lectures, if q is an ordered pair (F, Δ), we will denote F and Δ by F_q and Δ_q, respectively.

Let $\beta \leq \kappa$ and suppose \mathcal{P}_α has been defined for all $\alpha < \beta$. Conditions in \mathcal{P}_β are ordered pairs $q = (F, \Delta)$ with the following properties.
(1) F is a finite function with $\text{dom}(F) \subseteq \beta$.

(2) Δ is a finite set of pairs (N, γ) such that $N \in [H(\kappa)]^{\aleph_0}$ and γ is an ordinal such that $\gamma \leq \beta$ and $\gamma \leq \sup(N \cap \kappa)$.

(3) $\mathcal{N}_\beta^q := \{N : (N, \beta) \in \Delta, \beta \in N\}$ is a T^β–symmetric system.

(4) For every $\alpha < \beta$, the restriction of q to α,

$$q|_{\alpha} := (F \upharpoonright \alpha, \{(N, \min\{\alpha, \gamma\}) : (N, \gamma) \in \Delta\})$$

is a condition in \mathcal{P}_α.

(5) Suppose $\beta = \alpha + 1$. Let $\mathcal{N}^\dot{\mathcal{G}}_\alpha$ be a \mathcal{P}_α–name for $\bigcup\{\mathcal{N}_\alpha^r : r \in \dot{\mathcal{G}}_\alpha\}$ (where $\dot{\mathcal{G}}_\alpha$ is the canonical \mathcal{P}_α–name for the generic object). Let $\dot{\mathcal{C}}_\alpha$ be a \mathcal{P}_α–name for a club–sequence on ω_1 such that \mathcal{P}_α forces that

- $\dot{\mathcal{C}}_\alpha = \Phi(\alpha)$ in case $\Phi(\alpha)$ is a \mathcal{P}_α–name for a club–sequence on ω_1, and that
- $\dot{\mathcal{C}}_\alpha$ is some fixed club–sequence on ω_1 in the other case.

If $\alpha \in \text{dom}(F)$, then $F(\alpha) = (f, b, \emptyset)$ has the following properties.

(a) $f \subseteq \omega_1 \times \omega_1$ is a finite strictly increasing function.

(b) $\emptyset \subseteq \mathcal{N}_\alpha^q|_{\alpha}$ is a T^β–symmetric system.

(c) $\text{range}(f) \subseteq \{\delta_N : N \in \mathcal{O}\}$

(d) For every $\delta \in \text{dom}(f)$, if $N \in \mathcal{O}$ is such that $p(\delta) = \delta_N$, then

$$q|_{\alpha} \models_{\mathcal{P}_\alpha} \text{rank}(\mathcal{N}^\dot{\mathcal{G}}_\alpha \cap T^\beta, N) \geq \delta$$

(e) $\text{dom}(b) \subseteq \text{dom}(f)$ and $b(\delta) < f(\delta)$ for every $\delta \in \text{dom}(b)$.

(f) For every $\delta \in \text{dom}(b)$,

$$q|_{\alpha} \models_{\mathcal{P}_\alpha} \text{range}(f \upharpoonright \delta) \cap \dot{\mathcal{C}}_\alpha(f(\delta)) \subseteq b(\delta)$$

(g) For every $\delta \in \text{dom}(b)$, if $N \in \mathcal{O}$ is such that $f(\delta) = \delta_N$, then

$$q|_{\alpha} \models_{\mathcal{P}_\alpha} \text{rank}(\{M \in \mathcal{N}^\dot{\mathcal{G}}_\alpha \cap T^\beta : \delta_M \notin \dot{\mathcal{C}}_\alpha(f(\delta))\}, N) \geq \delta$$

(h) If $N \in \mathcal{N}_\beta^q$, then $N \in \mathcal{O}$, $\delta_N \in \text{dom}(f)$ and $f(\delta_N) = \delta_N$.

Given \mathcal{P}_β–conditions $q_i = (F_i, \Delta_i)$, for $i = 0, 1$, q_1 extends q_0 if and only if

- $\text{dom}(F_0) \subseteq \text{dom}(F_1)$ and for all $\alpha \in \text{dom}(F_0)$, if $F_0(\alpha) = (f, b, \varnothing)$ and $F_1(\alpha) = (f', b', \varnothing')$, then $f \subseteq f'$, $b \subseteq b'$ and $\varnothing \subseteq \varnothing'$, and
- $\Delta_0 \subseteq \Delta_1$

Lemma

Let $\alpha \leq \beta \leq \kappa$. If $q = (F_q, \Delta_q) \in \mathcal{P}_\alpha$, $r = (F_r, \Delta_r) \in \mathcal{P}_\beta$, and $q \leq_\alpha r|_\alpha$, then

$$r \land_\alpha q := (F_q \cup (F_r \upharpoonright [\alpha, \beta]), \Delta_q \cup \Delta_r)$$

is a condition in \mathcal{P}_β extending r. Hence, \mathcal{P}_α is a complete suborder of \mathcal{P}_β.

Proof.

This is thanks to the use of the markers γ in the (N, γ)’s from Δ.
Say that q is (N, P_α)–pre-generic iff $(N, \alpha) \in \Delta_q$ and $\alpha \in N$.

A technical lemma:

Lemma

Let $\beta < \kappa$. Suppose q is (M, P_β)–generic whenever q is (M, P_β)–pre-generic and $M \in T^{\beta+1}$.

Then for every $R \subseteq H(\kappa)$, if M is such that $\langle M, T^{\beta+1}, R \rangle \prec \langle H(\kappa), T^{\beta+1}, R \rangle$, then P_β forces that if $M \in N^{\dot{G}_\beta}$, then $\langle M[\dot{G}_\beta], \dot{G}_\beta, R \rangle \prec \langle H(\kappa)^V[\dot{G}_\beta], \dot{G}_\beta, R \rangle$.

\(^1\)We will see, in the following lemma, that this hypothesis is true.
Properness lemma:

Lemma
Suppose $\alpha < \kappa$ and $N \in T^{\alpha+1}$. Then the following holds.

(1) For every $q \in N$ there is $q' \leq \alpha q$ such that q' is (N, P_{α})–pre-generic.

(2) If $q \in P_{\alpha}$ is (N, P_{α})–pre-generic, then q is (N, P_{α})–generic.

Proof of the lemma on the board.
Lemma
\[\mathcal{P}_\kappa \text{ forces Measuring.} \]

Proof: Let \(\alpha < \kappa \), let \(G \) be \(\mathcal{P}_\alpha \)-generic, and suppose \(\Phi(\alpha) \) is a \(\mathcal{P}_\alpha \)-name for a club–sequence on \(\omega_1 \). Let
\[\tilde{C} = \Phi(\alpha)_G = (C_\epsilon : \epsilon \in \text{Lim}(\omega_1)) \]. Let \(H \) be a \(\mathcal{P}_{\alpha + 1} \)-generic filter such that \(H \upharpoonright \mathcal{P}_\alpha = G \), and let
\[D = \bigcup \text{range}\{f_{q,\alpha} : q \in H\}. \]
By the \(\aleph_2 \)-c.c. of \(\mathcal{P}_\kappa \) and the choice of \(\Phi \), the conclusion will follow, by standard arguments, if we show that \(D \) is a club of \(\omega_1 \) measuring \(\tilde{C} \).

By standard density arguments, \(D \) is a club of \(\omega_1 \). Also, if \(\epsilon \in D \) is such that there is some \(q \in H \) such that \(\epsilon = f_{q,\alpha}(\delta) \) for some \(\delta \in \text{dom}(b_{q,\alpha}) \), then a tail of \(D \cap \epsilon \) is disjoint from \(C_\epsilon \). Hence, it suffices to show that if \(\delta \in \omega_1 \) is such that \(\delta \notin \text{dom}(b_{q,\alpha}) \) for every \(q \in H \) and \(\epsilon \) is such that \(f_{q,\alpha}(\delta) = \epsilon \) for some \(q \in H \), then a tail of \(D \cap \epsilon \) is contained in \(C_\epsilon \).
But this implies that there is some $q \in H$ and some $N \in \mathcal{O}_{q,\alpha}$ such that $f_{q,\alpha}(\delta) = \delta_N$ and such that

$$q\big|_\alpha \models \mathcal{P}_\alpha \text{ rank}(\{M \in \mathcal{N}^\dot{G}_\alpha \cap \mathcal{T}^{\alpha+1} : \delta_M \notin \Phi(\alpha)(\epsilon) \}, N) = \delta_0$$

for some given $\delta_0 < \delta$. It will now be enough to find some $\eta \in [\delta_0, \delta)$ and some extension q^* of q such that every extension q' of q^* is such that $q'|_{\alpha}$ forces that $f_{q',\alpha}(\delta') \in \Phi(\alpha)(\delta)$ for every $\delta' \in \text{dom}(f_{q',\alpha}) \cap [\eta, \delta)$.
By extending $q|_{\alpha}$ if necessary we may assume that there is some $a \in N$ such that $q|_{\alpha}$ forces that if $M \in N \cap \dot{\mathcal{N}} \dot{\mathcal{G}}_{\alpha} \cap \mathcal{T}^{\alpha+1}$ is such that $a \in M$ and $\text{rank} \left(\dot{\mathcal{N}} \dot{\mathcal{G}}_{\alpha} \cap \mathcal{T}^{\alpha+1}, M \right) \geq \delta_0$, then $\delta_M \in \Phi(\alpha)(\epsilon)$.

Again by extending $q|_{\alpha}$ if necessary, we may also assume that there is some $M \in N \cap \dot{\mathcal{N}} q|_{\alpha} \cap \mathcal{T}^{\alpha+1}$ containing all relevant objects, where this includes a, and such that $q|_{\alpha}$ forces $\text{rank} \left(\dot{\mathcal{N}} \dot{\mathcal{G}}_{\alpha} \cap \mathcal{T}^{\alpha+1}, M \right) = \delta_1$, where $\delta_1 < \delta$ is such that $\delta_1 > \max(\text{dom}(f_{q,\alpha} \uparrow \delta))$ and $\delta_1 \geq \delta_0$. Let now q^* be any extension of q such that $M \in \mathcal{O}_{q^*,\alpha}$ and such that $f_{q^*,\alpha}(\delta_1) = \delta_M$. Now it is easy to verify that $\eta = \delta_1$ and q^* are as desired.
Indeed, it suffices to prove that if q' is any condition extending q^* and $R \in \mathcal{O}_{q',\alpha}$ is such that $\delta_R > \delta_M$ and $\delta_R < \delta_N$, then $q'|_{\alpha} \vdash_{\mathcal{P}_{\alpha}} \delta_R \in \Phi(\alpha)(\epsilon)$. But by symmetry of $\mathcal{O}_{q',\alpha}$ there is some $R' \in \mathcal{O}_{q',\alpha} \cap N$ such that $M \in R'$ and $\delta_{R'} = \delta_R$. Since $a \in R'$ and $q'|_{\alpha}$ extends $q^*|_{\alpha}$, it follows then that $q'|_{\alpha} \vdash_{\mathcal{P}_{\alpha}} \delta_R = \delta_{R'} \in \Phi(\alpha)(\epsilon)$. \qed

This finishes the proof of the theorem.
Building models of CH

The project of building models of consequences of forcing axioms like PFA together with CH has a long history, starting with:

Theorem

(Jensen) It is consistent to have CH together with the nonexistence of Suslin trees.

The proof of these results usually proceed by showing that some CS iteration of proper forcing notion not adding reals does not add reals at limit stages. A lot of quite technical work in this direction, especially due to Shelah. Strongest results so far in this direction for negations of ♦ are in the region of the relative consistency of ¬WCG with CH (Shelah, NNR revisited).
There are well–known limitations to this line of work (i.e., countable support iterations of proper forcing not adding reals may add reals at limit stages). Example:

Uniformization holds iff for every club–sequence \(\tilde{C} = (C_\delta : \delta \in \text{Lim}(\omega_1)) \) and every \(F : \text{Lim}(\omega_1) \rightarrow \{0, 1\} \) there is \(G : \omega_1 \rightarrow \{0, 1\} \) such that for every \(\delta \in \text{Lim}(\omega_1) \), \(F(\delta) = G(\beta) \) for all \(\beta \) on a tail of \(C_\delta \).

The natural forcing for, given \(\tilde{C} \) and \(F \), adding a uniformising function by initial segments is proper and does not add new reals.

However,
Fact
Uniformization implies $2^{\aleph_0} = 2^{\aleph_1}$.

Proof.
Fix a bijection $h : \omega \rightarrow \omega \times \omega$ such that $i, j \leq n$ whenever $h(n + 1) = (i, j)$. For each $f : \omega_1 \rightarrow 2$ construct functions $g_n : \omega_1 \rightarrow 2$ such that $g_0 = f$ and $g_{n+1} \upharpoonright C_\delta \equiv_{\text{fin}} g_i(\delta + j)$ whenever δ is a limit ordinal and $h(n + 1) = (i, j)$. Given g_k ($k \leq n$), g_{n+1} exists by applying Uniformization to the colouring $\delta \mapsto g_i(\delta + j)$

where $h(n + 1) = (i, j)$. But then, for each limit ordinal $\delta \geq \omega$, $(g_n \upharpoonright \delta)_{n<\omega}$ uniquely determines $(g_n \upharpoonright \delta + \omega)_{n<\omega}$. In particular, $(g \upharpoonright \omega)_{n<\omega}$ uniquely determines $(g_n)_{n<\omega}$ and hence $g_0 = f$. \qed
The following is an important test question in this context.

Question (J. Moore) Is Measuring consistent with CH?
Recall: $\text{Symm}_T = (\{ \mathcal{N} : \mathcal{N} \text{ T–symmetric system} \}, \supseteq)$ adds new reals but preserves CH.

Now: Suppose we build an iteration $(\mathcal{P}_\alpha : \alpha \leq \kappa)$ with symmetric systems of models as side conditions and we require that q extends $\psi_{\mathcal{N},\mathcal{N'}}(q|_\alpha)$ whenever $(\mathcal{N}, \gamma), (\mathcal{N}', \gamma') \in \Delta_q$, $\delta_\mathcal{N} = \delta_{\mathcal{N}'}$, $\alpha \in \mathcal{N} \cap (\gamma + 1)$ and $\psi_{\mathcal{N},\mathcal{N'}}(\alpha) \leq \gamma'$. Then the same proof for Symm_T should show that \mathcal{P}_κ preserves CH (although it adds new reals).

We will have to tinker a bit with this idea before this leads to an iteration doing something interesting.
Work in progress (A.–Mota) (CH) Let κ be a cardinal such that $2^{<\kappa} = \kappa$ and $\kappa^{\aleph_1} = \kappa$. There should then be a partial order \mathcal{P} with the following properties.

(1) \mathcal{P} is proper and \aleph_2–Knaster.

(2) \mathcal{P} forces the following statements.

(a) Measuring

(b) CH

(c) $2^{\mu} = \kappa$ for every uncountable cardinal $\mu < \kappa$.
Sketch of the construction:

Let \(\Phi : \kappa \rightarrow H(\kappa) \) be such that \(\Phi^{-1}(x) \) is unbounded in \(\kappa \) for all \(x \in H(\kappa) \). Let also \(\triangleleft \) be a well–order of \(H((2^\kappa)^+) \).

Let \((\theta_\alpha)_{\alpha < \kappa} \) be the sequence of cardinals defined by \(\theta_0 = |H((2^\kappa)^+)|^+ \) and \(\theta_\alpha = (2^{<\sup_{\beta < \alpha} \theta_\beta})^+ \) if \(\alpha > 0 \). For each \(\alpha < \kappa \) let \(\mathcal{M}_\alpha^* \) be the collection of all countable elementary substructures of \(H(\theta_\alpha) \) containing \(\Phi \), \(\triangleleft \) and \((\theta_\beta)_{\beta < \alpha} \), and let \(\mathcal{M}_\alpha = \{ N^* \cap H(\kappa) : N^* \in \mathcal{M}_\alpha^* \} \). Let \(T_\alpha \) be the \(\triangleleft \)–first \(T \subseteq H(\kappa) \) such that for every \(N \in [H(\kappa)]^{\aleph_0} \), if \((N; \in, T) \triangleleft (H(\kappa); \in, T) \), then \(N \in \mathcal{M}_\alpha \). Let also

\[
T_\alpha = \{ N \in [H(\kappa)]^{\aleph_0} : (N; \in, T_\alpha) \triangleleft (H(\kappa); \in, T_\alpha) \}
\]

and

\[
\vec{T}_\alpha = \{ (a, \xi) \in H(\kappa) \times \alpha + 1 : a \in T_\xi \}
\]

Let \(\beta \leq \kappa \) and suppose \(\mathcal{P}_\alpha \) defined for all \(\alpha < \beta \).
A triple \(q = (F, \Delta, \tau) \) is called a \(\mathcal{P}_\beta \)-pre-condition if and only if it has the following properties.

1. \(F \) is a function with finite support such that \(\text{dom}(F) = \beta \) and such that \(F(\alpha) \) is a triple \((f, b, \mathcal{O})\) for every \(\alpha \in \text{dom}(F) \).

2. \(\Delta \) is a finite set of pairs \((N, \gamma)\) such that \(N \in [H(\kappa)]^{\aleph_0} \), \(\gamma \in \text{cl}(N \cap \text{Ord}) \) and \(\gamma \leq \beta \).

3. \(\tau \) is an equivalence relation on \(\Delta \) such that \(\delta_N = \delta_{N'} \) whenever \(((N, \gamma), (N', \gamma')) \in \tau \) for some \(\gamma \) and \(\gamma' \).

4. \(\mathcal{N}_\beta^q \) is a \(T_\beta \)-symmetric system.

5. For every \(\alpha < \beta \), the restriction of \(q \) to \(\alpha \),

\[q|_\alpha := (F \upharpoonright \alpha, \Delta|_\alpha, \tau|_\alpha), \]

is a condition in \(\mathcal{P}_\alpha \).
(6) Fix $\alpha < \beta$.

Let \dot{C}^α be a \mathcal{P}_α–name for a club–sequence on ω_1 such that \mathcal{P}_α forces that

- $\dot{C}^\alpha = \Phi(\alpha)$ in case $\Phi(\alpha)$ is a \mathcal{P}_α–name for a club–sequence on ω_1, and that
- \dot{C}^α is some fixed club–sequence on ω_1 in the other case.

If $\alpha \in \text{supp}(F)$, then $F(\alpha) = (f^q_\alpha, b^q_\alpha, \mathcal{O}^q_\alpha)$ has the following properties.

(a) $f^q_\alpha \subseteq \omega_1 \times \omega_1$ is a finite strictly increasing function.

(b) $\mathcal{O}^q_\alpha \subseteq \mathcal{N}^q_\alpha|^{\alpha}$ is a $T_{\alpha+1}$–symmetric system.

(c) $\text{range}(f^q_\alpha) \subseteq \{\delta_N : N \in \mathcal{O}^q_\alpha\}$

(d) $\text{dom}(b^q_\alpha) \subseteq \text{dom}(f^q_\alpha)$ and $b^q_\alpha(\delta) < f^q_\alpha(\delta)$ for every $\delta \in \text{dom}(b^q_\alpha)$.

(e) For every $\delta \in \text{dom}(b^q_\alpha)$,

$$q|_\alpha \models_{\mathcal{P}_\alpha} \text{range}(f^q_\alpha \upharpoonright \delta) \cap \dot{C}^\alpha(f^q_\alpha(\delta)) \subseteq b^q_\alpha(\delta)$$

(f) If $N \in \mathcal{N}^q_{\alpha+1}$, then $N \in \mathcal{O}^q_\alpha$, $\delta_N \in \text{dom}(f^q_\alpha)$ and $f^q_\alpha(\delta_N) = \delta_N$.
For all $(N, \gamma), (N', \gamma') \in \Delta$ such that $(N, \gamma) \tau (N', \gamma')$ there is some $n < \omega$ such that

$$n = |\text{dom}(F) \cap N \cap \min \{\gamma, \psi_{N', N(\gamma')}\}| = |\text{dom}(F) \cap N' \cap \min \{\gamma', \psi_{N, N'}(\gamma')\}|;$$

furthermore, letting $(\alpha_i)_{i < n}$ and $(\alpha'_i)_{i < n}$ be the strictly increasing enumerations of $\text{supp}(F) \cap N \cap \min \{\gamma, \psi_{N', N(\gamma')}\}$ and $\text{supp}(F) \cap N' \cap \min \{\gamma', \psi_{N, N'}(\gamma)\}$, respectively, $\psi_{N, N'}$ is an isomorphism between the structures

$$(N; \in, \Phi, \tilde{T}_{\min \{\gamma, \psi_{N', N(\gamma')}\}}, \Delta, f^q_{\alpha_i}, b^q_{\alpha_i}, \mathcal{O}^q_{\alpha_i})_{i < n}$$

and

$$(N; \in, \Phi, \tilde{T}_{\min \{\gamma', \psi_{N, N'}(\gamma)\}}, \Delta, f^q_{\alpha'_i}, b^q_{\alpha'_i}, \mathcal{O}^q_{\alpha'_i})_{i < n}$$
Also, given \mathcal{P}_β–pre-conditions q_i, for $i = 0, 1$, let us say that q_1 extends q_0 if and only if

1. $\text{supp}(F_{q_0}) \subseteq \text{supp}(F_{q_1})$ and for all $\alpha \in \text{supp}(F_{q_0})$, $f_{q_0}^{\alpha} \subseteq f_{q_1}^{\alpha}$, $b_{q_0}^{\alpha} \subseteq b_{q_1}^{\alpha}$ and $\mathcal{O}_{q_0}^{\alpha} \subseteq \mathcal{O}_{q_1}^{\alpha}$,
2. $\Delta_{q_0} \subseteq \Delta_{q_1}$, and
3. $\tau_{q_0} \subseteq \tau_{q_1}$

Let us denote by \mathcal{P}_β^0 the collection of \mathcal{P}_β–pre-conditions ordered by the above extension relation.
We are now ready to define \mathcal{P}_β.

\mathcal{P}_β is the suborder of \mathcal{P}_β^0 consisting of all those $q = (F, \Delta, \tau) \in \mathcal{P}_\beta^0$ with the property that, if $\beta = \alpha_0 + 1$, then for every $\alpha \in \text{dom}(F)$ and $\delta \in \text{dom}(f^q_\alpha)$, if $N \in \mathcal{O}^q_\alpha$ is such that $f^q_\alpha(\delta) = \delta_N$, then

$$q|_{\alpha_0} \models_{\mathcal{P}^q_{\alpha_0}} \text{rank}(X^\alpha_{\delta_N}, N) \geq \delta,$$

where

(i) $\mathcal{P}^q_{\alpha_0}$ is the suborder of \mathcal{P}_{α_0} consisting of all those $p \in \mathcal{P}_{\alpha_0}$ such that $F_{\text{Symm}(p \oplus q[\alpha_0])}(\alpha) = F_q(\alpha)$, and
(ii) \(\mathcal{X}_{\delta_N}^\alpha \) is the set of \(M \in N_{\alpha}^{\dot{G}_{Pq_{\alpha_0}}} \cap T_{\alpha+1} \) such that \(\delta_M \not\in \dot{\mathcal{C}}_\xi(\delta') \) for all \(\delta' \geq \delta \) and all \(\xi \in \mathcal{W}_{\delta_N}^\alpha \) such that \(\delta' \in \text{dom}(b_{\xi}^p) \) and \(b_{\xi}^p(\delta') \leq \delta_M \) for some \(p \in \dot{G}_{Pq_{\alpha_0}} \cup \{ q \} \), and where, for every ordinal \(\eta \), \(\mathcal{W}_{\eta}^\alpha \) is the union of \(\{ \alpha \} \) and the set of ordinals of the form \(\psi_{Q,Q'}(\alpha) \), where, for some \(p \in \dot{G}_{Pq_{\alpha_0}} \cup \{ q \} \),

- \((Q, \gamma) \tau_P (Q', \gamma') \),
- \(\eta \leq \delta_Q \),
- \(\alpha \in Q \),
- \(\alpha < \gamma \), and
- \(\psi_{Q,Q'}(\alpha) < \gamma' \).
Why shouldn’t we be able to use this machinery to force Uniformization together with CH? (We know that’s impossible wince Uniformization implies $2^\aleph_0 = 2^\aleph_1$)

The reason boils down to the fact that for Uniformization, given \bar{C} and $F : \text{Lim}(\omega_1) \rightarrow 2$, we are required for the uniformising function $G : \omega_1 \rightarrow 2$ to be such that $G(\delta) \upharpoonright C_\delta \equiv_{\text{fin}} F(\delta)$, whereas for Measuring we have (relative) freedom to opt for a tail of $D \cap \delta$ to be contained in or disjoint from C_δ.