Lecture II
Recall from Lecture I

We are looking at ordinal \(\textbf{GLP} \)-spaces, i.e., polytopological spaces of the form \((\delta, (\tau_\zeta)_{\zeta<\xi})\), where \(\tau_0\) is the interval topology and \(\tau_{\zeta+1}\) is generated by \(\tau_\zeta\) together with the sets

\[
D_\zeta(A) := \{\alpha : \alpha \text{ is a } \tau_\zeta \text{ limit point of } A\}
\]

all \(A \subseteq \delta\).

\(\tau_1\) is the club topology. The non-isolated points are those \(\alpha\) with uncountable cofinality.

We observed that \(D_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}\).
Recall from Lecture I

We are looking at ordinal \textbf{GLP}-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_\zeta)_{\zeta<\xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_ζ together with the sets

$$D_\zeta(A) := \{\alpha : \alpha \text{ is a } \tau_\zeta \text{ limit point of } A\}$$

all $A \subseteq \delta$.

τ_1 is the club topology. The non-isolated points are those α with uncountable cofinality.

We observed that $D_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}$.
Recall from Lecture I

We are looking at ordinal GLP-spaces, i.e., polytopological spaces of the form \((\delta, (\tau_\zeta)_{\zeta<\xi})\), where \(\tau_0\) is the interval topology and \(\tau_{\zeta+1}\) is generated by \(\tau_\zeta\) together with the sets

\[D_\zeta(A) := \{\alpha : \alpha \text{ is a } \tau_\zeta \text{ limit point of } A\}\]

all \(A \subseteq \delta\).

\(\tau_1\) is the club topology. The non-isolated points are those \(\alpha\) with uncountable cofinality.

We observed that \(D_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}\).
Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α, for short) if and only if $A \cap \alpha$ is unbounded in α.

For $\xi > 0$, we say that $A \subseteq \delta$ is ξ-simultaneously-stationary in α (ξ-s-stationary in α, for short) if and only for every $\zeta < \xi$, every pair of ζ-s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ-s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ-s-stationary in β.

A is 2-s-stationary in $\alpha \iff$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.
Recall also the following definition

Definition

We say that $A \subseteq \delta$ is **0-simultaneously-stationary in** α (0-s-stationary in α, for short) if and only if $A \cap \alpha$ is unbounded in α.

For $\xi > 0$, we say that $A \subseteq \delta$ is **ξ-simultaneously-stationary in** α (ξ-s-stationary in α, for short) if and only for every $\zeta < \xi$, every pair of ζ-s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ-s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ-s-stationary in β.

A is 2-s-stationary in $\alpha \iff$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.
Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α, for short) if and only if $A \cap \alpha$ is unbounded in α. For $\xi > 0$, we say that $A \subseteq \delta$ is ξ-simultaneously-stationary in α (ξ-s-stationary in α, for short) if and only for every $\zeta < \xi$, every pair of ζ-s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ-s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ-s-stationary in β.

A is 2-s-stationary in α \iff every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

An Introduction to Hyperstationary Sets
Proposition

\(\alpha \) is not isolated in the \(\tau_2 \) topology if and only if \(\alpha \) is 2-s-stationary

Proof.

If \(\alpha \) is not 2-s-stationary, there are stationary \(A, B \subseteq \alpha \) such that
\(D_1(A) \cap D_1(B) = \{ \alpha \} \), hence \(\alpha \) is isolated.

Now suppose \(\alpha \) is 2-s-stationary and \(\alpha \in U = C \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1}) \), where \(C \subseteq \alpha \) is club. We claim that \(U \) contains some ordinal other than \(\alpha \). It is enough to show that \(D_1(A_0) \cap \ldots \cap D_1(A_{n-1}) \) is stationary.

Suppose first that \(n = 2 \). Fix any club \(C' \subseteq \alpha \). The sets \(C' \cap A_0 \) and \(C' \cap A_1 \) are stationary in \(\alpha \), and therefore they simultaneously reflect at some \(\beta < \alpha \). Thus \(\beta \in C' \cap D_1(A_0) \cap D_1(A_1) \).

Now, assume it holds for \(n \) and let us show it holds for \(n + 1 \). Fix a club \(C' \subseteq \alpha \). By the ind. hyp., \(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1}) \) is stationary. So, since the proposition holds for \(n = 2 \), the set
\(D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n) \) is also stationary. But clearly
\(D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n) \subseteq C' \cap D_1(A_0) \cap \ldots \cap D_1(A_n) \).
Proposition

α is not isolated in the τ_2 topology if and only if α is 2-s-stationary

Proof.

If α is not 2-s-stationary, there are stationary $A, B \subseteq \alpha$ such that $D_1(A) \cap D_1(B) = \{\alpha\}$, hence α is isolated.

Now suppose α is 2-s-stat. and $\alpha \in U = C \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$, where $C \subseteq \alpha$ is club. We claim that U contains some ordinal other than α. It is enough to show that $D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary.

Suppose first that $n = 2$. Fix any club $C' \subseteq \alpha$. The sets $C' \cap A_0$ and $C' \cap A_1$ are stationary in α, and therefore they simultaneously reflect at some $\beta < \alpha$. Thus $\beta \in C' \cap D_1(A_0) \cap D_1(A_1)$.

Now, assume it holds for n and let us show it holds for $n+1$. Fix a club $C' \subseteq \alpha$. By the ind. hyp., $C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary. So, since the proposition holds for $n = 2$, the set $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n)$ is also stationary. But clearly $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n) \subseteq C' \cap D_1(A_0) \cap \ldots \cap D_1(A_n)$.
A similar argument, relativized to any set A yields:

Proposition

$$D_2(A) = \{\alpha : A \cap \alpha \text{ is 2-s-stationary in } \alpha\}.$$
The τ_ξ topology

In order to analyse the topologies τ_ξ, for $\xi \geq 3$, note first the following general facts:

1. For every $\xi' < \xi$ and every $A, B \subseteq \delta$,

$$D_{\xi'}(A) \cap D_\xi(B) = D_\xi(D_{\xi'}(A) \cap B).$$

2. For every ordinal ξ, the sets of the form

$$I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$$

where $I \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all $i < n$, form a base for τ_ξ.
The τ_ξ topology

In order to analyse the topologies τ_ξ, for $\xi \geq 3$, note first the following general facts:

1. For every $\xi' < \xi$ and every $A, B \subseteq \delta$,

 $$D_{\xi'}(A) \cap D_\xi(B) = D_\xi(D_{\xi'}(A) \cap B).$$

2. For every ordinal ξ, the sets of the form

 $$I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$$

 where $I \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all $i < n$, form a base for τ_ξ.
Characterizing non-isolated points

Theorem

1. For every ξ,
 \[D_\xi(A) = \{ \alpha : A \text{ is } \xi\text{-s-stationary in } \alpha \}. \]

2. For every ξ and α, A is $\xi + 1$-s-stationary in α if and only if
 \[A \cap D_\zeta(S) \cap D_\zeta(T) \cap \alpha \neq \emptyset \] (equivalently, if and only if
 \[A \cap D_\zeta(S) \cap D_\zeta(T) \] is ζ-s-stationary in α) for every $\zeta \leq \xi$ and every
 pair S, T of subsets of α that are ζ-s-stationary in α.

3. For every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary
 in α for some $\zeta_i < \xi$, all $i < n$, then
 \[A \cap D_{\zeta_0}(A_0) \cap \ldots \cap D_{\zeta_{n-1}}(A_{n-1}) \]
 is ξ-s-stationary in α.

\(^a\)For $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).
Characterizing non-isolated points

Theorem

1. For every ξ,

 $$D_\xi(A) = \{\alpha : A \text{ is } \xi\text{-s-stationary in } \alpha\}.$$ \(^a\)

2. For every ξ and α, A is $\xi+1\text{-s-stationary in } \alpha$ if and only if

 $$A \cap D_\zeta(S) \cap D_\zeta(T) \cap \alpha \neq \emptyset$$ (equivalently, if and only if $A \cap D_\zeta(S) \cap D_\zeta(T)$ is $\zeta\text{-s-stationary in } \alpha$) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are $\zeta\text{-s-stationary in } \alpha$.

3. For every ξ and α, if A is $\xi\text{-s-stationary in } \alpha$ and A_i is $\zeta_i\text{-s-stationary}$

 in α for some $\zeta_i < \xi$, all $i < n$, then $A \cap D_{\zeta_0}(A_0) \cap \ldots \cap D_{\zeta_{n-1}}(A_{n-1})$

 is $\xi\text{-s-stationary in } \alpha$.

\(^a\)For $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).
Characterizing non-isolated points

Theorem

1. For every ξ,

 $$D_\xi(A) = \{ \alpha : A \text{ is } \xi\text{-s-stationary in } \alpha \}.$$

2. For every ξ and α, A is $\xi + 1$-s-stationary in α if and only if

 $$A \cap D_\zeta(S) \cap D_\zeta(T) \cap \alpha \neq \emptyset$$

 (equivalently, if and only if

 $$A \cap D_\zeta(S) \cap D_\zeta(T)$$

 is ζ-s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ-s-stationary in α.

3. For every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some $\zeta_i < \xi$, all $i < n$, then $A \cap D_{\zeta_0}(A_0) \cap \ldots \cap D_{\zeta_{n-1}}(A_{n-1})$ is ξ-s-stationary in α.

aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).
Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ, an ordinal $\alpha < \delta$ is not isolated in the τ_ξ topology if and only if α is ξ-s-stationary.
Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ, an ordinal $\alpha < \delta$ is not isolated in the τ_ξ topology if and only if α is ξ-s-stationary.
The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NS^ξ_α be the set of non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS^1_α is the ideal of non-stationary subsets of α and $(NS^1_\alpha)^*$ is the club filter over α.

Notice that $\zeta \leq \xi$ implies $NS^\zeta_\alpha \subseteq NS^\xi_\alpha$ and $(NS^\zeta_\alpha)^* \subseteq (NS^\xi_\alpha)^*$.

Also note that $A \subseteq \alpha$ belongs to $\bigcap NS^\xi_\alpha$ if and only if for some $\zeta < \xi$ and some ζ-s-stationary sets $S, T \subseteq \alpha$, the set $D_\zeta(S) \cap D_\zeta(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ-s-stationary, with $\zeta < \xi$, then $D_\zeta(S) \cap \alpha \in (NS^\xi_\alpha)^*$.
The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NS_{α}^{ξ} be the set of non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS_{α}^{1} is the ideal of non-stationary subsets of α and $(\text{NS}_{\alpha}^{1})^{*}$ is the club filter over α.

Notice that $\zeta \leq \xi$ implies $\text{NS}_{\alpha}^{\zeta} \subseteq \text{NS}_{\alpha}^{\xi}$ and $(\text{NS}_{\alpha}^{\zeta})^{*} \subseteq (\text{NS}_{\alpha}^{\xi})^{*}$.

Also note that $A \subseteq \alpha$ belongs to $(\text{NS}_{\alpha}^{\xi})^{*}$ if and only if for some $\zeta < \xi$ and some ζ-s-stationary sets S, $T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ-s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (\text{NS}_{\alpha}^{\xi})^{*}$.
The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NS_{α}^{ξ} be the set of non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS_{α}^{1} is the ideal of non-stationary subsets of α and $(NS_{\alpha}^{1})^*$ is the club filter over α.

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ-s-stationary sets $S, T \subseteq \alpha$, the set $D_\zeta(S) \cap D_\zeta(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ-s-stationary, with $\zeta < \xi$, then $D_\zeta(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.
The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NS^ξ_α be the set of non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS^1_α is the ideal of non-stationary subsets of α and $(NS^1_\alpha)^*$ is the club filter over α.

Notice that $\zeta \leq \xi$ implies $NS^\zeta_\alpha \subseteq NS^\xi_\alpha$ and $(NS^\zeta_\alpha)^* \subseteq (NS^\xi_\alpha)^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS^\xi_\alpha)^*$ if and only if for some $\zeta < \xi$ and some ζ-s-stationary sets $S, T \subseteq \alpha$, the set $D_\zeta(S) \cap D_\zeta(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ-s-stationary, with $\zeta < \xi$, then $D_\zeta(S) \cap \alpha \in (NS^\xi_\alpha)^*$.
Theorem

For every ξ, a limit ordinal α is ξ-s-stationary if and only if NS_{α}^{ξ} is a proper ideal, hence if and only if $(\text{NS}_{\alpha}^{\xi})^*$ is a proper filter.
Proof.

Assume α is ξ-s-stationary (hence $\alpha \not\in NS^\xi_\alpha$) and let us show that NS^ξ_α is an ideal. For $\xi = 0$ this is clear. So, suppose $\xi > 0$ and $A, B \in NS^\xi_\alpha$.

There exist $\zeta_A, \zeta_B < \xi$, and there exist sets $S_A, T_A \subseteq \alpha$ that are ζ_A-s-stationary in α, and sets $S_B, T_B \subseteq \alpha$ that are ζ_B-s-stationary in α, such that $D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap A = D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B) \cap B = \emptyset$. Hence,

$$(D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B)) \cap (A \cup B) = \emptyset.$$

The set $X := D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B)$ is $\max\{\zeta_A, \zeta_B\}$-s-stationary in α. Now notice that

$$D_{\max\{\zeta_A, \zeta_B\}}(X) \subseteq X$$

and so we have

$$D_{\max\{\zeta_A, \zeta_B\}}(X) \cap \alpha \cap (A \cup B) = \emptyset$$

which witnesses that $A \cup B \in NS^\xi_\alpha$.

\qed
Continued.

For the converse, assume NS_α^ξ is a proper ideal. Take any A and B ζ-s-stationary subsets of α, for some $\zeta < \xi$. Then $D_\zeta(A) \cap \alpha$ and $D_\zeta(B) \cap \alpha$ are in $(NS_\alpha^\xi)^*$. Moreover, if $S, T \subseteq \alpha$ are any ζ'-s-stationary sets, for some $\zeta' < \xi$, then also $D_{\zeta'}(S) \cap \alpha$ and $D_{\zeta'}(T) \cap \alpha$ belong to $(NS_\alpha^\xi)^*$. Hence, since $(NS_\alpha^\xi)^*$ is a filter,

$$D_\zeta(A) \cap D_\zeta(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \in (NS_\alpha^\xi)^*$$

which implies, since $(NS_\alpha^\xi)^*$ is proper, that $D_\zeta(A) \cap D_\zeta(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \neq \emptyset$. This shows that $D_\zeta(A) \cap D_\zeta(B)$ is ξ-s-stationary in α. Since A and B were arbitrary, this implies α is ξ-s-stationary.
Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

1. α is a non-isolated point in the τ_ξ topology.
2. α is ξ-s-stationary.
3. \mathcal{NS}_α^ξ is a proper ideal.
Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

1. α is a non-isolated point in the τ_ξ topology.
2. α is ξ-s-stationary.
3. $\mathcal{N}S^\xi_\alpha$ is a proper ideal.
The following are equivalent for every limit ordinal α and every $\xi > 0$:

1. α is a non-isolated point in the τ_ξ topology.
2. α is ξ-s-stationary.
3. NS^{ξ}_α is a proper ideal.
Indescribable cardinals

Recall that a formula of second-order logic is Σ^1_0 (or Π^1_0) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0, \ldots, X_k \varphi(X_0, \ldots, X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_ξ.

And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0, \ldots, X_k \varphi(X_0, \ldots, X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Σ^1_ξ.
Indescribable cardinals

Recall that a formula of second-order logic is Σ^1_0 (or Π^1_0) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0, \ldots, X_k \varphi(X_0, \ldots, X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_ξ.

And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0, \ldots, X_k \varphi(X_0, \ldots, X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Σ^1_ξ.
Definition

If ξ is a limit ordinal, then we say that a formula is Π^1_ξ if it is of the form

$$\bigwedge_{\zeta<\xi} \varphi_\zeta$$

where φ_ζ is Π^1_ζ, all $\zeta < \xi$, and it has only finitely-many free second-order variables. And we say that a formula is Σ^1_ξ if it is of the form

$$\bigvee_{\zeta<\xi} \varphi_\zeta$$

where φ_ζ is Σ^1_ζ, all $\zeta < \xi$, and it has only finitely-many free second-order variables.
Definition

A cardinal κ is Π^1_ξ-indescribable if for all subsets $A \subseteq V_\kappa$ and every Π^1_ξ sentence φ, if

$$\langle V_\kappa, \in, A \rangle \models \varphi$$

then there is some $\lambda < \kappa$ such that

$$\langle V_\lambda, \in, A \cap V_\lambda \rangle \models \varphi.$$
Theorem

Every Π^1_ξ-indescribable cardinal is $(\xi + 1)$-s-stationary. Hence, if ξ is a limit ordinal and a cardinal κ is Π^1_ξ-indescribable for all $\zeta < \xi$, then κ is ξ-s-stationary.
Proof.

Let κ be an infinite cardinal. Clearly, the fact that a set $A \subseteq \kappa$ is 0-s-stationary (i.e., unbounded) in κ can be expressed as a Π^1_0 sentence $\varphi_0(A)$ over $\langle V_\kappa, \in, A \rangle$. Inductively, for every $\xi > 0$, the fact that a set $A \subseteq \kappa$ is ξ-s-stationary in κ can be expressed by a Π^1_ξ sentence φ_ξ over $\langle V_\kappa, \in, A \rangle$. Namely,

$$\bigwedge_{\zeta < \xi} (A \text{ is } \zeta\text{-s-stationary})$$

in the case ξ is a limit ordinal, and by the sentence

$$\bigwedge_{\zeta < \xi - 1} (A \text{ is } \zeta\text{-s-stationary}) \land$$

$$\forall S, T (S, T \text{ are } (\xi - 1)\text{-s-stationary in } \kappa \rightarrow$$

$$\exists \beta \in A (S \text{ and } T \text{ are } (\xi - 1)\text{-s-stationary in } \beta))$$

which is easily seen to be equivalent to a Π^1_ξ sentence, in the case ξ is a successor ordinal.
Continued.

Now suppose κ is Π^1_ξ-indescribable, and suppose that A and B are ζ-s-stationary subsets of κ, for some $\zeta \leq \xi$. Thus,

$$\langle V_\kappa, \in, A, B \rangle \models \varphi_\zeta[A] \land \varphi_\zeta[B].$$

By the Π^1_ξ-indescribability of κ there exists $\beta < \kappa$ such that

$$\langle V_\beta, \in, A \cap \beta, B \cap \beta \rangle \models \varphi_\zeta[A \cap \beta] \land \varphi_\zeta[B \cap \beta]$$

which implies that A and B are ζ-s-stationary in β. Hence κ is $(\xi + 1)$-s-reflecting.
Reflection and indescribability in L

Assume $V = L$. For every $\xi > 0$, a regular cardinal is $(\xi + 1)$-stationary if and only if it is Π^1_ξ-indescribable, hence if and only if it is $(\xi + 1)$-s-stationary.a,b

The proof actually shows the following:

Theorem

Assume $V = L$. Suppose $\xi > 0$ and κ is a regular $(\xi + 1)$-stationary cardinal. Then for every $A \subseteq \kappa$ and every Π^1_ξ sentence Ψ, if $\langle L_\kappa, \in, A \rangle \models \Psi$, then there exists a ξ-stationary $S \subseteq \kappa$ such that Ψ reflects to every ordinal λ on which S is ξ-stationary.
Theorem

\[\text{CON}(\exists \kappa < \lambda \ (\kappa \text{ is } \Pi^1_\xi \text{-indescribable } \land \lambda \text{ is inaccessible})) \text{ implies } \text{CON}(\tau_{\xi+1} \text{ is non-discrete } \land \tau_{\xi+2} \text{ is discrete}). \]

Proof.

Let \(\kappa \) be \(\Pi^1_\xi \text{-indescribable} \), and let \(\lambda > \kappa \) be inaccessible. In \(L \), \(\kappa \) is \(\Pi^1_\xi \text{-indescribable} \) and \(\lambda \) is inaccessible. So, in \(L \), let \(\kappa_0 \) be the least \(\Pi^1_\xi \text{-indescribable} \) cardinal, and let \(\lambda_0 \) be the least inaccessible cardinal above \(\kappa_0 \). Then \(L_{\lambda_0} \) is a model of ZFC in which \(\kappa_0 \) is \(\Pi^1_\xi \text{-indescribable} \) and no regular cardinal greater than \(\kappa_0 \) is 2-stationary. The reason is that if \(\alpha \) is a regular cardinal greater than \(\kappa_0 \), then \(\alpha = \beta^+ \), for some cardinal \(\beta \). And since Jensen’s principle \(\Box_\beta \) holds, there exists a stationary subset of \(\alpha \) that does not reflect.
Theorem

\(\text{CON}(\exists \kappa < \lambda (\kappa \text{ is } \Pi^1_\xi \text{-indescribable } \land \lambda \text{ is inaccessible})) \) implies \(\text{CON}(\tau_{\xi+1} \text{ is non-discrete } \land \tau_{\xi+2} \text{ is discrete}) \).

Proof.

Let \(\kappa \) be \(\Pi^1_\xi \)-indescribable, and let \(\lambda > \kappa \) be inaccessible. In \(L \), \(\kappa \) is \(\Pi^1_\xi \)-indescribable and \(\lambda \) is inaccessible. So, in \(L \), let \(\kappa_0 \) be the least \(\Pi^1_\xi \)-indescribable cardinal, and let \(\lambda_0 \) be the least inaccessible cardinal above \(\kappa_0 \). Then \(L_{\lambda_0} \) is a model of ZFC in which \(\kappa_0 \) is \(\Pi^1_\xi \)-indescribable and no regular cardinal greater than \(\kappa_0 \) is 2-stationary. The reason is that if \(\alpha \) is a regular cardinal greater than \(\kappa_0 \), then \(\alpha = \beta^+ \), for some cardinal \(\beta \). And since Jensen’s principle \(\square_\beta \) holds, there exists a stationary subset of \(\alpha \) that does not reflect.
On the consistency strength of 2-stationarity

Let us write:

\[d_\xi(A) := \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \} \]

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal \(\kappa \) is a reflection cardinal if there exists a proper, normal, and \(\kappa \)-complete ideal \(\mathcal{I} \) on \(\kappa \) such that for every \(X \subseteq \kappa \),

\[X \in \mathcal{I}^+ \implies d_1(X) \in \mathcal{I}^+. \]

Note: if \(\kappa \) is 2-stationary, then \(NS_\kappa \) is the smallest such ideal.

\(\kappa \) is weakly compact \(\implies \) many reflection cardinals below \(\kappa \).
On the consistency strength of 2-stationarity

Let us write:

\[d_\xi(A) := \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \} \]

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal \(\kappa \) is a reflection cardinal if there exists a proper, normal, and \(\kappa \)-complete ideal \(I \) on \(\kappa \) such that for every \(X \subseteq \kappa \),

\[X \in I^+ \implies d_1(X) \in I^+. \]

Note: if \(\kappa \) is 2-stationary, then \(NS_\kappa \) is the smallest such ideal. \(\kappa \) is weakly compact \(\implies \) many reflection cardinals below \(\kappa \).
On the consistency strength of 2-stationarity

Let us write:

\[d_\xi(A) := \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \} \]

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal \(\kappa \) is a **reflection cardinal** if there exists a proper, normal, and \(\kappa \)-complete ideal \(I \) on \(\kappa \) such that for every \(X \subseteq \kappa \),

\[X \in I^+ \implies d_1(X) \in I^+. \]

Note: if \(\kappa \) is 2-stationary, then \(NS_\kappa \) is the smallest such ideal. \(\kappa \) is weakly compact \(\implies \) many reflection cardinals below \(\kappa \).
On the consistency strength of 2-stationarity

Let us write:

\[d_\xi(A) := \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \} \]

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal \(\kappa \) is a **reflection cardinal** if there exists a proper, normal, and \(\kappa \)-complete ideal \(\mathcal{I} \) on \(\kappa \) such that for every \(X \subseteq \kappa \),

\[X \in \mathcal{I}^+ \implies d_1(X) \in \mathcal{I}^+. \]

Note: if \(\kappa \) is 2-stationary, then \(NS_\kappa \) is the smallest such ideal.

\(\kappa \) is weakly compact \(\implies \) many reflection cardinals below \(\kappa \).
On the consistency strength of 2-stationarity

Let us write:

\[d_\xi(A) := \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \} \]

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal \(\kappa \) is a reflection cardinal if there exists a proper, normal, and \(\kappa \)-complete ideal \(\mathcal{I} \) on \(\kappa \) such that for every \(X \subseteq \kappa \),

\[X \in \mathcal{I}^+ \implies d_1(X) \in \mathcal{I}^+. \]

Note: if \(\kappa \) is 2-stationary, then \(NS_\kappa \) is the smallest such ideal.

\(\kappa \) is weakly compact \(\implies \) many reflection cardinals below \(\kappa \).
The consistency strength of hyperstationarity. Applications and Open Questions

On the consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)

If \(\kappa \) is a reflection cardinal in \(L \), then in some generic extension of \(L \) that preserves cardinals, \(\kappa \) is 2-stationary. (In fact, the set \(\text{Reg} \cap \kappa \) of regular cardinals below \(\kappa \) is 2-stationary).

Corollary

The following are equiconsistent:

1. There exists a reflection cardinal.
2. There exists a 2-stationary cardinal.
3. There exists a regular cardinal \(\kappa \) such that every \(\kappa \)-free abelian group is \(\kappa^+ \)-free.
On the consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)

If κ is a reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 2-stationary. (In fact, the set $\text{Reg} \cap \kappa$ of regular cardinals below κ is 2-stationary).

Corollary

The following are equiconsistent:

1. There exists a reflection cardinal.
2. There exists a 2-stationary cardinal.
3. There exists a regular cardinal κ such that every κ-free abelian group is κ^+-free.
On the consistency strength of 2-stationarity

Recall that a regular cardinal \(\kappa \) is **greatly Mahlo** if there exists a proper, normal, and \(\kappa \)-complete ideal \(\mathcal{I} \) on \(\kappa \) such that \(\text{Reg} \cap \kappa \in \mathcal{I}^* \), and for every \(X \subseteq \kappa \),

\[
X \in \mathcal{I}^* \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^*.
\]

Theorem (A. H. Mekler-S. Shelah, 1989)

In L, if \(\kappa \) is at most the first greatly-Mahlo cardinal, then \(\kappa \) is not a reflection cardinal.

Thus, in \(L \), the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.
On the consistency strength of 2-stationarity

Recall that a regular cardinal κ is **greatly Mahlo** if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that $\text{Reg} \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \implies d_1(X) \in \mathcal{I}^*. $$

Theorem (A. H. Mekler-S. Shelah, 1989)

In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.
On the consistency strength of 2-stationarity

Recall that a regular cardinal κ is \textbf{greatly Mahlo} if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that $\text{Reg} \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \implies d_1(X) \in \mathcal{I}^*. $$

\textbf{Theorem (A. H. Mekler-S. Shelah, 1989)}

\textit{In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.}

Thus, in L, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.
On the consistency strength of n-stationarity

We would like to prove analogous results for the n-stationary sets. So, let’s define:

Definition

For $n > 0$, a regular uncountable cardinal κ is an n-reflection cardinal if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \Rightarrow d_n(X) \in \mathcal{I}^+. $$

Note: If κ is n-s-stationary, then the set NS_{κ}^n of non-n-s-stationary subsets of κ is the least such ideal.
On the consistency strength of n-stationarity

We would like to prove analogous results for the n-stationary sets. So, let’s define:

Definition

For $n > 0$, a regular uncountable cardinal κ is an n-reflection cardinal if there exists a proper, normal, and κ-complete ideal I on κ such that for every $X \subseteq \kappa$,

$$X \in I^+ \Rightarrow d_n(X) \in I^+.$$

Note: If κ is n-s-stationary, then the set NS^n_κ of non-n-s-stationary subsets of κ is the least such ideal.
On the consistency strength of n-stationarity

We would like to prove analogous results for the n-stationary sets. So, let’s define:

Definition

For $n > 0$, a regular uncountable cardinal κ is an n-reflection cardinal if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \Rightarrow d_n(X) \in \mathcal{I}^+.$$

Note: If κ is n-s-stationary, then the set NS^n_{κ} of non-n-s-stationary subsets of κ is the least such ideal.
On the consistency strength of n-stationarity

We would like to prove analogous results for the n-stationary sets. So, let's define:

Definition

For $n > 0$, a regular uncountable cardinal κ is an n-reflection cardinal if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \implies d_n(X) \in \mathcal{I}^+.$$

Note: If κ is n-s-stationary, then the set NS^n_κ of non-n-s-stationary subsets of κ is the least such ideal.
On the consistency strength of n-stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

If κ is a 2-reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 3-stationary.

(In fact, the set $\text{Reg} \cap \kappa$ of regular cardinals below κ is 3-stationary).

Similar arguments should yield a similar result for $n > 3$.
On the consistency strength of n-stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

\[\text{If } \kappa \text{ is a } 2\text{-reflection cardinal in } L, \text{ then in some generic extension of } L \text{ that preserves cardinals, } \kappa \text{ is } 3\text{-stationary.} \]

\[\text{(In fact, the set } \text{Reg} \cap \kappa \text{ of regular cardinals below } \kappa \text{ is } 3\text{-stationary).} \]

Similar arguments should yield a similar result for $n > 3$.
On the consistency strength of n-stationarity

Definition

A regular cardinal κ is **n-greatly Mahlo** if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that $\text{Reg} \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \implies d_n(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in L, the first n-reflection cardinal is strictly between the first n-greatly-Mahlo and the first Π^1_{n-1}-indescribable.
On the consistency strength of n-stationarity

Definition

A regular cardinal κ is **n-greatly Mahlo** if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that $\text{Reg} \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \implies d_n(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in L, the first n-reflection cardinal is strictly between the first n-greatly-Mahlo and the first Π^1_{n-1}-indescribable.
On the consistency strength of n-stationarity

Definition

A regular cardinal κ is **n-greatly Mahlo** if there exists a proper, normal, and κ-complete ideal \mathcal{I} on κ such that $\text{Reg} \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \implies d_n(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in L, the first n-reflection cardinal is strictly between the first n-greatly-Mahlo and the first Π^1_{n-1}-indescribable.
On the consistency strength of n-s-stationarity.

Magidor\(^1\) shows that the following are equiconsistent:

1. There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
2. There exists a weakly-compact cardinal.

Conjecture

The following should be equiconsistent for every $n > 0$:

1. There exists an $(n + 1)$-s-stationary cardinal.
2. There exists an Π^1_n-indescribable cardinal.

\(^1\)M. Magidor, On reflecting stationary sets. JSL 47 (1982)
On the consistency strength of \(n\)-s-stationarity.

Magidor\(^1\) shows that the following are equiconsistent:

1. There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
2. There exists a weakly-compact cardinal.

Conjecture

The following should be equiconsistent for every \(n > 0 \):

1. There exists an \((n + 1)\)-s-stationary cardinal.
2. There exists an \(\Pi^1_n \)-indescribable cardinal.

\(^1\)M. Magidor, On reflecting stationary sets. JSL 47 (1982)