Generalizing Schreier families to large index sets

Christina Brech
Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017
Outline

1. Introduction
 - Basic notation and definitions
 - Motivation: indiscernibles in Banach spaces

2. First main result
 - Multiplication of families
 - Families on trees
 - Stepping up

3. Second main result
 - Cantor-Bendixson indices and homogeneity
 - Topological multiplication and bases
Main References

Useful tools
Useful tools

Fact 1

TFAE:

- beer, wine, water, coffee, bread;
- pivo, víno, voda, káva, chléb/chleba.
Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering.
Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).
Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- **hereditary** if it is closed under subsets;
Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- **hereditary** if it is closed under subsets;
- **compact** if it is a compact (equiv. closed) subset of 2^I, when we identify each element of \mathcal{F} with its characteristic function;
Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).

\mathcal{F} is said to be:

- **hereditary** if it is closed under subsets;
- **compact** if it is a compact (equiv. closed) subset of 2^I, when we identify each element of \mathcal{F} with its characteristic function;
- **pre-compact** if every sequence in \mathcal{F} has a subsequence which forms a Δ-system;
I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- **hereditary** if it is closed under subsets;
- **compact** if it is a compact (equiv. closed) subset of 2^I, when we identify each element of \mathcal{F} with its characteristic function;
- **pre-compact** if every sequence in \mathcal{F} has a subsequence which forms a Δ-system;
- **large** if it contains arbitrarily large (in cardinality) finite subsets within any infinite subset X of I.
Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{<n}$ is hereditary and compact, but not large.
Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\mathcal{F} \subseteq \{ s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t \}$ is compact;
(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;
(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 3 (Schreier family)

The family $S = \{ \emptyset \} \cup \{ s \in [\omega]^{<\omega} : |s| \leq \min s + 1 \}$ is hereditary, compact and large.
Example 2 (Cubes)
For each \(n \in \omega \), the family \([\kappa]^{\leq n}\) is hereditary and compact, but not large.

Exercise 1
Let \(\mathcal{F} \) be a family on \(I \). Prove that:

(i) \(\mathcal{F} \) is compact iff every sequence in \(\mathcal{F} \) has a subsequence which forms a \(\Delta \)-system with root in \(\mathcal{F} \);
Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};

(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}^\subseteq} = \{s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;
Example 2 (Cubes)
For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1
Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};

(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}^\subseteq} = \{s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;

(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;
Example 2 (Cubes)
For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1
Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};

(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^c = \{ s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t \}$ is compact;

(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;

(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 3 (Schreier family)
The family $\mathcal{S} = \{\emptyset\} \cup \{s \in [\omega]^{<\omega} : |s| \leq \min s + 1\}$ is hereditary, compact and large.
Example 2 (Cubes)
For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1
Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\mathcal{F}^\subseteq = \{s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;
(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;
(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 3 (Schreier family)
The family $\mathcal{S} = \{\emptyset\} \cup \{s \in [\omega]^{<\omega} : |s| \leq \min s + 1\}$ is hereditary, compact and large.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If F is a compact large family on I, then the relational structure $\mathcal{M}_F := (I, (F \cap [I]^n))_n$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X, <)$ is a set of indiscernibles. Given $n \geq 1$, since F is large, there is $s \in [X]^n \cap F$.

Now, given $t \in [X]^n$, writing $s = \{x_1 < \cdots < x_n\}$ and $t = \{y_1 < \cdots < y_n\}$, we get that $t \in [X]^n \cap F$.

Hence, $[X] < \omega \subseteq F$, contradicting the fact that F is compact.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_\mathcal{F} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X, <)$ is a set of indiscernibles.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_F := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X, <)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_\mathcal{F} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X, <)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$. Now, given $t \in [X]^n$, writing $s = \{x_1 < \cdots < x_n\}$ and $t = \{y_1 < \cdots < y_n\}$, we get that $t \in [X]^n \cap \mathcal{F}$.
Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_\mathcal{F} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X, <)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$. Now, given $t \in [X]^n$, writing $s = \{x_1 < \cdots < x_n\}$ and $t = \{y_1 < \cdots < y_n\}$, we get that $t \in [X]^n \cap \mathcal{F}$. Hence, $[X]<\omega \subseteq \mathcal{F}$, contradicting the fact that \mathcal{F} is compact. \qed
Indiscernibles in Banach spaces: subsymmetric sequences

A sequence \((x_n)_n\) in a Banach space \(X\) is subsymmetric if there is \(C \geq 1\) such that for all \((\lambda_i)_{i=1}^l\) and all increasing sequences \((k_i)_{i=1}^l\) and \((n_i)_{i=1}^l\) we have that

\[
\| \sum_{i=1}^l \lambda_i x_{k_i} \| \leq C \| \sum_{i=1}^l \lambda_i x_{n_i} \|.
\]
Indiscernibles in Banach spaces: subsymmetric sequences

A sequence \((x_n)_n\) in a Banach space \(X\) is subsymmetric if there is \(C \geq 1\) such that for all \((\lambda_i)_{i=1}^l\) and all increasing sequences \((k_i)_{i=1}^l\) and \((n_i)_{i=1}^l\) we have that

\[
\left(\frac{1}{C} \left\| \sum_{i=1}^l \lambda_i x_{n_i} \right\| \leq \right) \left\| \sum_{i=1}^l \lambda_i x_{k_i} \right\| \leq C \left\| \sum_{i=1}^l \lambda_i x_{n_i} \right\|.
\]
Indiscernibles in Banach spaces: subsymmetric sequences

A sequence \((x_n)\) in a Banach space \(X\) is subsymmetric if there is \(C \geq 1\) such that for all \((\lambda_i)_{i=1}^l\) and all increasing sequences \((k_i)_{i=1}^l\) and \((n_i)_{i=1}^l\) we have that

\[
\left(\frac{1}{C} \left\| \sum_{i=1}^l \lambda_i x_{n_i} \right\| \leq \right) \left\| \sum_{i=1}^l \lambda_i x_{k_i} \right\| \leq C \left\| \sum_{i=1}^l \lambda_i x_{n_i} \right\|.
\]

Example 4

The unit bases of \(c_0\) and \(\ell_p\), \(1 \leq p < \infty\) are (sub)symmetric.
Example 5 (Schreier space)

Given: \(x = (x_n)_n \in c_{00}(\omega) \), let \(\| x \|_S = \sup \{ \sum_{n \in s} |x_n| : s \in S \} \).

\(\| \cdot \|_S \) is a norm and the completion of \((c_{00}(\omega), \| \cdot \|_S) \) is a Banach space such that \((e_n)_n \) is an unconditional basis with no subsymmetric basic subsequences.
Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $\|x\|_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$. $\|\cdot\|_S$ is a norm and the completion of $(c_{00}(\omega), \|\cdot\|_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_\infty \leq \|\cdot\|_S \Rightarrow \|\cdot\|_S$ is a norm;
Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $\|x\|_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$.

$\|\cdot\|_S$ is a norm and the completion of $(c_{00}(\omega), \|\cdot\|_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{< 1} \subseteq S \Rightarrow \|\cdot\|_{\infty} \leq \|\cdot\|_S \Rightarrow \|\cdot\|_S$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first m-many coordinates are bounded $\Rightarrow (e_n)_n$ is a Schauder basis, clearly unconditional;
Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $\|x\|_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$.

$\|\cdot\|_S$ is a norm and the completion of $(c_{00}(\omega), \|\cdot\|_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_\infty \leq \|\cdot\|_S \Rightarrow \|\cdot\|_S$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first m-many coordinates are bounded $\Rightarrow (e_n)_n$ is a Schauder basis, clearly unconditional;
- compactness + Ptak’s Lemma + largeness of $\mathcal{F} \Rightarrow (e_n)_n$ has no subsymmetric subsequences.
Example 5 (Schreier space)

Given: \(x = (x_n)_n \in c_{00}(\omega) \), let \(\| x \|_S = \sup \{ \sum_{n \in s} |x_n| : s \in S \} \).

\(\| \cdot \|_S \) is a norm and the completion of \((c_{00}(\omega), \| \cdot \|_S)\) is a Banach space such that \((e_n)_n\) is an unconditional basis with no subsymmetric basic subsequences.

- \([\omega]^{\leq 1} \subseteq S \Rightarrow \| \cdot \|_\infty \leq \| \cdot \|_S \Rightarrow \| \cdot \|_S \) is a norm;
- hereditariness of \(F \Rightarrow \) projections on the first \(m \)-many coordinates are bounded \(\Rightarrow (e_n)_n \) is a Schauder basis, clearly unconditional;
- compactness + Ptak’s Lemma + largeness of \(F \Rightarrow (e_n)_n \) has no subsymmetric subsequences.

Lemma 6 (Pták, 1963)

If \(F \) is a compact family on \(\omega \), then for every \(\varepsilon > 0 \), there is a finite \(F \subseteq \omega \) and positive \((a_\alpha)_{\alpha \in F}\) such that \(\sum_{\alpha \in F} a_\alpha = 1 \) and \(\sum_{\alpha \in s} a_\alpha < \varepsilon \) if \(s \in F \cap \varnothing(F) \).
Lopez-Abad and Todorcevic result

Theorem 7 (Lopez-Abad, Todorcevic, 2013)

Let κ be an infinite cardinal. TFAE:

(a) κ is not ω-Erdös, i.e., if $\kappa \not\rightarrow (\omega)^<\omega$;

(b) there is a hereditary, compact and large family \mathcal{F} on κ;

(c) there is a nontrivial normalized weakly-null basis $(x_\alpha)_{\alpha < \kappa}$ in a Banach space with no subsymmetric basic subsequence.
(a) implies (b)

Fact 8

If \(\kappa \not\rightarrow (\omega)_2^{<\omega} \) and \(c : [\kappa]^{<\omega} \rightarrow 2 \), then

\[
\mathcal{F}_c = \{ s \subseteq \omega : s \text{ is monochromatic} \}
\]

is a hereditary, compact and large family on \(\kappa \).
Fact 8

If $\kappa \nrightarrow (\omega)^{<\omega}_2$ and $c : [\kappa]^{<\omega} \rightarrow 2$, then

$$\mathcal{F}_c = \{ s \subseteq \omega : s \text{ is monochromatic} \}$$

is a hereditary, compact and large family on κ.

Proof.

It is clearly hereditary and it is easy to check that it is compact. Largeness is a consequence of the finite Ramsey theorem. The fact that $\kappa \nrightarrow (\omega)^{<\omega}_2$ is needed only to guarantee that \mathcal{F}_c consists of finite subsets of κ. \qed
Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and $x = (x_\alpha)_\alpha \in c_{00}(\kappa)$, let

$$\|x\|_{\mathcal{F}} = \sup\left\{ \sum_{\alpha \in s} |x_\alpha| : s \in \mathcal{F} \right\}.$$

$\| \cdot \|_{\mathcal{F}}$ is a norm and the completion of $(c_{00}(\kappa), \| \cdot \|_{\mathcal{F}})$ is a Banach space such that $(e_\alpha)_\alpha$ is an unconditional basis with no subsymmetric basic subsequences.
Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and $x = (x_\alpha)_\alpha \in c_{00}(\kappa)$, let

$$\|x\|_\mathcal{F} = \sup\left\{ \sum_{\alpha \in s} |x_\alpha| : s \in \mathcal{F} \right\}.$$

$\| \cdot \|_\mathcal{F}$ is a norm and the completion of $(c_{00}(\kappa), \| \cdot \|_\mathcal{F})$ is a Banach space such that $(e_\alpha)_\alpha$ is an unconditional basis with no subsymmetric basic subsequences.

Proof.

Analogous to the Schreier space.
Exercise 2

\[\kappa \rightarrow (\omega)^{<\omega}_2 \iff \kappa \rightarrow (\omega)^{<\omega}_2. \]

Hint: Given \(c : [\kappa]^{<\omega} \rightarrow 2^\omega \) and \(\theta : \omega^2 \rightarrow \omega \) bijection such that \(\theta(i, j) \geq i \), let \(d : [\kappa]^{<\omega} \rightarrow 2 \) be such that \(d(s) \) is the \(j \)-th coordinate of the \(c \)-color of the subset of \(s \) consisting of its first \(i \)-many elements, where \(\theta(i, j) = |s| \) and show that a \(d \)-monochromatic set is also \(c \)-monochromatic.
(c) implies (a)

Exercise 2

\[\kappa \rightarrow (\omega)^{<\omega}_2 \text{ iff } \kappa \rightarrow (\omega)^{<\omega}_2. \]

Hint: Given \(c : [\kappa]^{<\omega} \rightarrow 2^\omega \) and \(\theta : \omega^2 \rightarrow \omega \) bijection such that \(\theta(i, j) \geq i \), let \(d : [\kappa]^{<\omega} \rightarrow 2 \) be such that \(d(s) \) is the \(j \)-th coordinate of the \(c \)-color of the subset of \(s \) consisting of its first \(i \)-many elements, where \(\theta(i, j) = |s| \) and show that a \(d \)-monochromatic set is also \(c \)-monochromatic.

Fact 10 (Ketonen, 1974)

Given \((x_\alpha)_{\alpha < \kappa} \), for each \(s = \{ \alpha_1 < \cdots < \alpha_n \} \in [\kappa]^{<\omega} \) with \(|s| = n \), define \(f_s \) on \(\mathbb{R}^n \) by \(f_s(a_1, \ldots, a_n) = \|a_1 x_{\alpha_1} + \cdots + a_n x_{\alpha_n}\| \) and define \(c : [\kappa]^{<\omega} \rightarrow \bigcup_{n \in \omega} \{n\} \times \mathbb{R}^{n+1} \) by \(c(s) = (|s|, f_s) \). If \(A \) is an infinite monochromatic subset of \(\kappa \), then \((x_\alpha)_{\alpha \in A} \) is symmetric.
Tsirelson space

Let us now turn to the “full” (in contrast with the “sequential”) version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences.
Tsirelson space

Let us now turn to the “full” (in contrast with the “sequential”) version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences. The first such example was given by Tsirelson.

Example 11 (Tsirelson space)

Given $x = (x_n)_n \in c_{00}(\omega)$, let $\|x\|_T$ on $c_{00}(\omega)$ be such that

$$\|x\|_T = \sup\{\|x\|_\infty, \frac{1}{2} \sum_{i=1}^{n} \|\langle x_i, \chi_{s_i} \rangle\|_T : s_i < s_{i+1}, \{\min s_i\}_{1 \leq i \leq n} \in S\}.$$

$\| \cdot \|_T$ is a norm and the completion of $(c_{00}(\omega), \| \cdot \|_T)$ is a (separable) reflexive Banach space with no subsymmetric basic sequences.
Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_1, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013).
Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_1, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:
Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_1, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:

Fact 12

If \mathcal{F} is a large and spreading family on an uncountable index set, then \mathcal{F} is not compact.
Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_1, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:

Fact 12

If F is a large and spreading family on an uncountable index set, then F is not compact.

To overcome this obstacle, we switch from a single large family to sequences of families obtained by making some kind of products by families on ω, such as the Schreier family.
Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ.

Recall that a cardinal κ is Mahlo if it is strongly inaccessible and $\{\lambda < \kappa : \lambda \text{ is strongly inaccessible}\}$ is stationary.
Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S}.
Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by S.

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ.

Recall that a cardinal κ is Mahlo if it is strongly inaccessible and $\{\lambda < \kappa : \lambda \text{ is strongly inaccessible}\}$ is stationary.
Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by S.

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ.

Recall that a cardinal κ is **Mahlo** if it is strongly inaccessible and $\{\lambda < \kappa : \lambda \text{ is strongly inaccessible}\}$ is stationary.
Nonseparable Tsirelson-like spaces

Theorem 14 (B., Lopez-Abad, Todorcevic & Argyros, Motakis)

If \((F_n)_n\) is a CL-sequence, then there is a Banach space \(X\) of density \(\kappa\) with an unconditional (long) basis and with no subsymmetric sequences.
Theorem 14 (B., Lopez-Abad, Todorcevic & Argyros, Motakis)

If \((F_n)_n\) is a CL-sequence, then there is a Banach space \(X\) of density \(\kappa\) with an unconditional (long) basis and with no subsymmetric sequences.

Sketch.

Given \(x \in c_{00}(\kappa)\), let

\[
\|x\| = \sup\{\|x\|_\infty, \sum_{n=0}^{\infty} \frac{\|x\|_{F_n}}{2^{n+1}} \|T\}\}.
\]

This is a norm such that the closure with respect to it is a Banach space of density \(\kappa\) with an unconditional basis and with no subsymmetric sequences.
A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}' on ω, let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \ s \in \mathcal{F}', \ t \in \mathcal{F} \},$$

$$\mathcal{F} \otimes \mathcal{F}' = \bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{ \min s_k : k < n \} \in \mathcal{F}' \},$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes S) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by S.
A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}' on ω, let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \ s \in \mathcal{F}', \ t \in \mathcal{F} \},$$

$$\mathcal{F} \otimes \mathcal{F}' = \{ \bigcup_{k<n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{ \min s_k : k < n \} \in \mathcal{F}' \},$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes S) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by S.

Define inductively:

- $\mathcal{F}_0 = S$;
- $\mathcal{F}_{n+1} = (S_n \otimes S) \oplus S_n$.

$(\mathcal{F}_n)_n$ is a CL-sequence of families on ω.