On measurable *Hamel functions*

Rafał Filipów, Andrzej Nowik, Piotr Szuca

University of Gdańsk
Institute of Mathematics
Wita Stwosza 57
80 – 952 Gdańsk
Poland

e-mail: rfilipow@delta.univ.gda.pl
e-mail: andrzej@delta.univ.gda.pl
e-mail: pszuca@radix.com.pl

Hejnice, January 30, 2010
1 Basic notions and the (Pre)history

2 Introduction

3 The origin of the notion of a Hamel function

4 The next results base on:

5 The proof machine

6 Further results
A Hamel base

1. A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called Hamel basis.

2. 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:

3. $f(x + y) = f(x) + f(y)$
A Hamel base

1. A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called Hamel basis.

2. 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:

$$f(x + y) = f(x) + f(y)$$
A Hamel base

1. A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called **Hamel basis**.

2. 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:

$$f(x + y) = f(x) + f(y)$$
σ – fields

Marczewski field and sets

1. \(A \in (s) \) iff \(\forall P \in \text{Perf} \exists Q \in \text{Perf} \ Q \subseteq A \lor Q \cap A = \emptyset \).

2. \(A \in (s_0) \) iff \(\forall P \in \text{Perf} \exists Q \in \text{Perf} \ Q \cap A = \emptyset \).

Marczewski measurable function

- \(f : \mathbb{R} \to \mathbb{R} \) is Marczewski measurable iff \(\forall U \text{ open} \Rightarrow f^{-1}[U] \in (s) \).
- \(f : \mathbb{R} \to \mathbb{R} \) is Marczewski measurable iff \(\forall P \in \text{Perf} \exists Q \in \text{Perf} \ f \mid Q \) is continuous.
Marczewski field and sets

1. $A \in (s)$ iff $\forall P \in \text{Perf} \exists Q \in \text{Perf} \quad Q \subseteq A \lor Q \cap A = \emptyset$.

2. $A \in (s_0)$ iff $\forall P \in \text{Perf} \exists Q \in \text{Perf} \quad Q \cap A = \emptyset$.

Marczewski measurable function

- $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall U \text{ open} \quad f^{-1}[U] \in (s)$.
- $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall P \in \text{Perf} \exists Q \in \text{Perf} \quad f \mid Q \text{ is continuous}$.
σ – fields

Marczewski field and sets

1. \(A ∈ (s) \) iff \(\forall P ∈ Perf \exists Q ∈ Perf \; Q ⊆ A ∨ Q ∩ A = ∅. \)
2. \(A ∈ (s_0) \) iff \(\forall P ∈ Perf \exists Q ∈ Perf \; Q ∩ A = ∅. \)

Marczewski measurable function

1. \(f : \mathbb{R} → \mathbb{R} \) is Marczewski measurable iff \(∀ U \; U \) open \(→ f^{-1}[U] ∈ (s) \)
2. \(f : \mathbb{R} → \mathbb{R} \) is Marczewski measurable iff \(∀ P ∈ Perf \exists Q ∈ Perf \; f ↑ Q \) is continuous.
σ – fields

Marczewski field and sets

1. $A \in (s)$ iff $\forall_{P \in \text{Perf}} \exists_{Q \in \text{Perf}} Q \subseteq A \lor Q \cap A = \emptyset$.
2. $A \in (s_0)$ iff $\forall_{P \in \text{Perf}} \exists_{Q \in \text{Perf}} Q \cap A = \emptyset$.

Marczewski measurable function

1. $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall_{U \text{ open}} f^{-1}[U] \in (s)$
2. $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall_{P \in \text{Perf}} \exists_{Q \in \text{Perf}} f \upharpoonright Q$ is continuous.
A Hamel function

- Suppose that \(f : \mathbb{R} \to \mathbb{R} \).
- We say that \(f \) is a Hamel function if \(f \), considered as a subset of \(\mathbb{R}^2 \), is a Hamel basis of \(\mathbb{R}^2 \).

Who and whene introduced this notion?

- The class of Hamel functions was introduced by K. Płotka in...
A Hamel function

- Suppose that $f : \mathbb{R} \to \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2, is a Hamel basis of \mathbb{R}^2.

Who and whene introduced this notion?

- The class of Hamel functions was introduced by K. Płotka in...
A Hamel function

- Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2, is a Hamel basis of \mathbb{R}^2.

Who and whene introduced this notion?

- The class of Hamel functions was introduced by K. Płotka in...
A Hamel function

- Suppose that \(f : \mathbb{R} \to \mathbb{R} \).
- We say that \(f \) is a Hamel function if \(f \), considered as a subset of \(\mathbb{R}^2 \), is a Hamel basis of \(\mathbb{R}^2 \).

Who and whene introduced this notion?

- The class of Hamel functions was introduced by K. Płotka in...
K. Płotka

On functions whose graph is a Hamel basis.

What is known about Hamel functions?

- There exists such a function!
- Theorem: (K. Płotka) Every $f : \mathbb{R} \to \mathbb{R}$ is the pointwise sum of two Hamel functions.
What is known about Hamel functions?

- There exists such a function!
- **Theorem:** (K.Płotka) Every $f: \mathbb{R} \to \mathbb{R}$ is the pointwise sum of two Hamel functions.
Rafał Filipów, Andrzej Nowik, Piotr Szuca

There are measurable Hamel functions.

Submitted
Theorem:

- There exists a **Marczewski measurable** Hamel function.
- There exists a **Lebesgue measurable** Hamel function.
- There exists a Hamel function with **the Baire property**.
Main results

Theorem:

- There exists a **Marczewski measurable** Hamel function.
- There exists a **Lebesgue measurable** Hamel function.
- There exists a Hamel function with the **Baire property**.
Main results

Theorem:

- There exists a Marczewski measurable Hamel function.
- There exists a Lebesgue measurable Hamel function.
- There exists a Hamel function with the Baire property.
The proof machine

Theorem:

- I is a σ-ideal of subsets of \mathbb{R} which contains singletons.
- $\exists B \in I$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^\omega$.
- Then there exists a Hamel function which is measurable with respect to $\text{Bor}\triangle I$.
Theorem:

- \mathcal{I} is a σ-ideal of subsets of \mathbb{R} which contains singletons.
- $\exists B \in \mathcal{I}$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^\omega$.
- Then there exists a Hamel function which is measurable with respect to $\text{Bor}\Delta \mathcal{I}$.
Theorem:

- \mathcal{I} is a σ-ideal of subsets of \mathbb{R} which contains singletons.
- $\exists B \in \mathcal{I}$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^\omega$.
- Then there exists a Hamel function which is measurable with respect to $\mathcal{B}or \Delta \mathcal{I}$.

Theorem:

- \mathcal{I} is a Borel generated (ccc) σ-ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ-field $\text{Bor} \Delta \mathcal{I}$.

Rafał Filipów, Andrzej Nowik, Piotr Szuca (University of Gdańsk Institute of Mathematics Wita Stwosza 57 80–952 Gdańsk Poland)
e-mail: rfilipow@delta.univ.gda.pl e-mail: andrzej@delta.univ.gda.pl e-mail: pszuca@radix.com.pl

On measurable Hamel functions Hejnice, January 30, 2010 11 / 14
Theorem:

- \mathcal{I} is a Borel generated (ccc) σ-ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ-field $\text{Bor} \triangle \mathcal{I}$.
Theorem:

- \mathcal{I} is a Borel generated (ccc) σ-ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ-field $\text{Bor} \triangle \mathcal{I}$.

Rafał Filipów, Andrzej Nowik, Piotr Szuca (University of Gdańsk Institute of Mathematics Wita Stwosza 57 80-952 Gdańsk Poland)
e-mail: rfilipow@delta.univ.gda.pl e-mail: andrzej@delta.univ.gda.pl e-mail: pszuca@radix.com.pl

On measurable Hamel functions

Hejnice, January 30, 2010
Definition of σ–porous sets

Theorem:

$$p(X, r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r - \varepsilon, r + \varepsilon))}{\varepsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

- X is porous ($X \in \mathcal{P}$) iff $\forall a \in X \; p(X, a) > 0$.
- $\sigma \mathcal{P}$ denote the sigma-ideal generated by the porous sets.
Theorem:

\[p(X, r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r - \varepsilon, r + \varepsilon))}{\varepsilon}, \]

where \(\lambda(X, I) \) denotes the maximal length of an open subinterval of the interval \(I \) which is disjoint from \(X \).

- \(X \) is porous \((X \in P) \) iff \(\forall a \in X \) \(p(X, a) > 0 \).
- \(\sigma P \) denote the sigma-ideal generated by the porous sets.
Definition of σ–porous sets

Theorem:

$$p(X, r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r - \varepsilon, r + \varepsilon))}{\varepsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

- X is *porous* $(X \in \mathcal{P})$ iff $\forall a \in X p(X, a) > 0$.
- $\sigma \mathcal{P}$ denote the sigma-ideal generated by the porous sets.
Further results

Theorem:

- There exists a Hamel function which is measurable with respect to the σ-field $\Bor \bigtriangleup \sigma \mathcal{P}$ (sigma porous sets).
- There exists a Hamel function which is measurable with respect to the σ-field $\Bor \bigtriangleup \mathcal{E}$.
- There exists a Hamel function which is measurable with respect to the σ-field $\Bor \bigtriangleup (\mathcal{N} \cap \mathcal{M})$.
There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle \sigma P$ (sigma porous sets).

There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle E$.

There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle (N \cap M)$.
Further results

Theorem:

- There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle \sigma P$ (sigma porous sets).
- There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle E$.
- There exists a Hamel function which is measurable with respect to the σ-field $Bor \triangle (N \cap M)$.
Thank You for Your Attention

😊