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Foliage trees

Informally: a foliage tree = a tree with a leaf at each node.

De�nition

F = ⟨T , ϕ⟩ is a foliage tree ∶←→
T is a tree and ϕ is a function with domain(ϕ) = T .
. T is called the skeleton of F ;

. ϕ(v) is called the leaf of F at node v (we denote it by Fv ).

Recall that the Baire space N is ωω with the product topology.

Example

The standard foliage tree of N ∶= a foliage tree S such that

â skeletonS ∶= <ωω and

â Sv ∶= {a ∈ ωω ∶ a begins with v}.
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Properties of foliage trees

De�nition

Let F be a foliage tree.

(1) F is locally strict ∶←→
∀v ∈ skeletonF, Fv = ⊔{Fc ∶ c ∈ children(v)}.

(2) F has strict branches ∶←→
for each branch B of skeletonF, ∣ ⋂v∈B Fv ∣ = 1.

(3) F is open in a space X ∶←→
each Fv is an open subset of X .

. F is a Baire foliage tree on a space X ∶←→
(1) F is locally strict,
(2) F has strict branches,
(3) F is open in X ,
(4) skeletonF ≅ <ωω,
(5) F0F = X (where 0F ∶= the least node of skeletonF).
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Properties of foliage trees

Example

S is a Baire foliage tree on N .

Lemma

For any space X the following are equivalent:

â There is a Baire foliage tree on X .

â X admits a weaker topology homeomorphic to N .

Another Example

There is a Baire foliage tree on the Sorgenfrey line RS .
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Properties of foliage trees

De�nition

Let F be a foliage tree and v ∈ skeletonF.

. shootF(v) ∶=
filter {⋃w∈A Fw ∶ A is a co-�nite subset of childrenF(v) }

(6) F grows into a space X ∶←→
∀p ∈X ∀neighbdO(p) ∃v ∈ skeletonF s.t.

â Fv ∋ p and

â shootF(v) ∋ O(p)
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The following spaces lie in LPB:
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â if Xα ∈ {N ,RS ,IS} and 0 < ∣A∣ ≤ ℵ0,
then ∏α∈AXα ∈ LPB;

â if X ∈LPB,
then X ×N ∈ LPB;

â if Xα ∈ LPB and 0 < ∣A∣ ≤ ℵ0,
then ⊕α∈AXα ∈ LPB;

â if L is a Luzin π-base for X and ∅ ≠ A ⊆ skeletonL,
then ⋃z∈A Lz ∈ LPB;

â if X ∈LPB and F ⊆ X is a σ-compact,

then X∖F ∈ LPB (the proof uses the foliage hybrid operation).
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Hybrid operation

De�nition

A tree G a graft for a tree T ∶←→
(1) G ∩T = {0G} ∪ maxG and

(2) <G ↾ (G ∩ T ) = <T ↾ (G ∩ T ).

. implantG ∶= G ∖ T ;

. explant(T ,G) ∶= (0G,+∞)T ∖ [maxG,+∞)T .

De�nition

A family γ of grafts is consistent ∶←→
(3) ∀E ≠G ∈ γ [ implantE ∩ implantG = ∅] and

(4) ∀E ≠G ∈ γ
â 0E ∥T 0G or
â 0E ∈ [maxG,+∞)T or
â 0G ∈ [maxE ,+∞)T .
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Foliage hybrid operation

We consider only nonincreasing foliage trees (w > v → Fw ⊆ Fv ).

De�nition

A foliage tree G is a foliage graft for a foliage tree F ∶←→
â skeletonG is a graft for skeletonF,

â G0G ⊆ F0G , and

â ∀m ∈maxG [Gm = Fm].

. cut(F,G) ∶= F0G∖G0G ;

. loss(F, γ) ∶= ⋃{cut(F,G) ∶ G ∈ γ}.
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