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Introduction

We will work with injections from ω to ω. The set of all such
injections will be denoted by Inj. Fix an ideal I on ω and let
f ∈ Inj. We say that f is I-invariant if f [A] ∈ I for all A ∈ I. We
say that f −1 is I-invariant if f −1[A] ∈ I for all A ∈ I. If f and
f −1 are I-invariant then f is called bi-I-invariant. Note that every
f ∈ Inj is bi-Fin-invariant.
We start from easy facts and simple examples.

Fact

Let I be an ideal on ω and let f ∈ Inj.

(i ) f −1 is I-invariant if and only if f [A] /∈ I for every A /∈ I.

(ii) If f [ω] ∈ I, then f is I-invariant and it is not bi-I-invariant.

(iii) If Fix(f ) ∈ I?, then f is bi-I-invariant.

(iv) Inj is a Gδ subset of ωω, hence it is a Polish space.
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Introduction

Easy examples

(i) Note that every increasing injection is Id -invariant. In
particular, f (n) := n2 is Id -invariant. Moreover, in this case
f [ω] ∈ Id , hence f is not bi-Id -invariant.

(ii) Let f : ω → ω be given by the formulas: f (2n) := 4n,
f (4n + 1) = 4n + 2, f (4n + 3) := 2n + 1 for n ∈ ω. Then f is
a bijection. Consider the ideal I defined as follows

I := {A ∪ B : A ∈ Fin, B ⊆ 2ω}.

Clearly, f is I-invariant bijection which is not bi-I-invariant.
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Countably generated ideals

Fact

There are three types of countably generated ideals: Fin,
Fin⊕P(ω) and Fin×∅.

Theorem

Each f ∈ Inj is bi-Fin-invariant.

Sets Fin⊕P(ω)-Inv, of all Fin⊕P(ω)-invariant injections, and
bi-Fin⊕P(ω)-Inv, of all bi-Fin⊕P(ω)-invariant injections, are
true Fσ subsets of Inj.

The sets Fin×∅-Inv and bi-Fin×∅-Inv, are meager of type
Fσδ in Inj ⊆ (ω× ω)ω×ω. Moreover, bi-I-Inv is Fσδ-complete.
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Maximal ideals

I-invariance

Let I be a maximal ideal. Then f ∈ Inj is I-invariant iff f [ω] ∈ I
or Fix(f ) ∈ I?.
EASY PROOF (hint: Orbit Of (n) := {f k(n) : k ∈ Z}).

Corollary

Let I be a maximal ideal on ω and f ∈ Inj. Then f is I-invariant
if and only if either Fix(f ) ∈ I? or f [ω] ∈ I.

Example

Let I,J be non-isomorphic maximal ideals on ω and f ∈ Inj.
Then f is bi-I ⊕ J -invariant iff Fix(f ) ∈ (I ⊕ J )?.
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Ideals generated by Solecki’s submeasures

A submeasure on ω is a function ϕ : P(ω)→ [0,∞] such that:

ϕ(∅) = 0;

if A ⊂ B then ϕ(A) ≤ ϕ(B),

ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B),

ϕ({n}) <∞ for all n ∈ ω.

A submeasure ϕ is called a lower semicontinuos submeasure (in
short, lscsm) if ϕ(A) = limn→∞ ϕ(A ∩ n) for all A ⊂ ω. For any
lscsm ϕ, we consider two ideals given by

Exh(ϕ) = {A ⊂ ω : lim
n→∞

ϕ(A \ n) = 0}.

Fin(ϕ) = {A ⊂ ω : ϕ(A) <∞}.
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Ideals generated by Solecki’s submeasures

Let ϕ be a lscsm. Then Exh(ϕ) is an Fσδ P-ideal, Fin(ϕ) is an Fσ
ideal and Exh(ϕ) ⊂ Fin(ϕ).

Theorem [Mazur, Solecki]

Let I be an ideal on ω. Then

I is an Fσ ideal if and only if I = Fin(ϕ) for some lscsm ϕ.

I is an analytic P-ideal if and only if I = Exh(ϕ) for some
lscsm ϕ.

I is an Fσ P-ideal if and only if I = Fin(ϕ) = Exh(ϕ) for
some lscsm ϕ.

If I is ideal on ω then it is not a Gδ set.
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Ideals generated by Solecki’s submeasures

Theorem

Let ϕ be a lsc submeasure on ω. Let f : ω → ω be an increasing
injection and Cf > 0 be a constant depending on f such that
ϕ(A) ≥ Cf ϕ(f [A]) for every A ⊆ ω. Then f is invariant with
respect to the ideals Fin(ϕ) and Exh(ϕ). Additionally, if there is a
constant C ′f > 0 with ϕ(A) ≥ C ′f ϕ(f −1[A]) for every A ⊆ ω, then
f is bi-invariant with respect to the ideals Fin(ϕ) and Exh(ϕ).

Remark

by the lower semicontinuity of ϕ, one can assume that the
condition ϕ(A) ≥ Cf ϕ(f [A]) holds only for finite sets A ⊆ ω. It is
natural to ask whether one can assume that the condition
ϕ(A) ≥ Cf ϕ(f [A]) holds for any A with |A| ≤ n for some fixed n.
The answer is ”no”.
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Ideals Id and I(1/n)

Classical density ideal

Id := {A ⊂ ω :
card(A ∩ n)

n
→ 0}

Classical summable ideal

IS := {A ⊂ ω :
∑
n∈A

1

n
<∞}
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Ideals Id and I(1/n)

Theorem

Let f : ω → ω be an increasing injection. The following conditions
are equivalent:

(i) f is bi-Id -invariant;

(ii) d(f [ω]) > 0;

(iii) there is C ∈ ω such that f (n) ≤ Cn for every n ≥ 1;

(iv) f is bi-I(1/n)-invariant.

Lower density

d(A) = lim inf
card(A ∩ n)

n
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Thank you for your attention!
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