Some structural properties of ideal invariant injections

Jarosław Swaczyna

Łódź University of Technology

Hejnice, 05.02.2016

joint work with Marek Balcerzak and Szymon Głąb
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called $\text{bi-}\mathcal{I}$-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^*$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_δ subset of ω^ω, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called bi-\mathcal{I}-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^*$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_δ subset of ω^ω, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called $\text{bi-}\mathcal{I}$-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^*$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_δ subset of ω^ω, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called bi-\mathcal{I}-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^*$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_δ subset of ω^ω, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called bi-\mathcal{I}-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^{*}$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_{δ} subset of ω^{ω}, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by Inj. Fix an ideal \mathcal{I} on ω and let $f \in \text{Inj}$. We say that f is \mathcal{I}-invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. We say that f^{-1} is \mathcal{I}-invariant if $f^{-1}[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$. If f and f^{-1} are \mathcal{I}-invariant then f is called $\text{bi-}\mathcal{I}$-invariant. Note that every $f \in \text{Inj}$ is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \mathcal{I} be an ideal on ω and let $f \in \text{Inj}$.

(i) f^{-1} is \mathcal{I}-invariant if and only if $f[A] \notin \mathcal{I}$ for every $A \notin \mathcal{I}$.

(ii) If $f[\omega] \in \mathcal{I}$, then f is \mathcal{I}-invariant and it is not bi-\mathcal{I}-invariant.

(iii) If $\text{Fix}(f) \in \mathcal{I}^*$, then f is bi-\mathcal{I}-invariant.

(iv) Inj is a G_δ subset of ω^ω, hence it is a Polish space.
We will work with injections from ω to ω. The set of all such injections will be denoted by \(\text{Inj} \). Fix an ideal \(\mathcal{I} \) on \(\omega \) and let \(f \in \text{Inj} \). We say that \(f \) is \(\mathcal{I} \)-invariant if \(f[A] \in \mathcal{I} \) for all \(A \in \mathcal{I} \). We say that \(f^{-1} \) is \(\mathcal{I} \)-invariant if \(f^{-1}[A] \in \mathcal{I} \) for all \(A \in \mathcal{I} \). If \(f \) and \(f^{-1} \) are \(\mathcal{I} \)-invariant then \(f \) is called \(\text{bi-} \mathcal{I} \)-invariant. Note that every \(f \in \text{Inj} \) is bi-Fin-invariant.

We start from easy facts and simple examples.

Fact

Let \(\mathcal{I} \) be an ideal on \(\omega \) and let \(f \in \text{Inj} \).

(i) \(f^{-1} \) is \(\mathcal{I} \)-invariant if and only if \(f[A] \notin \mathcal{I} \) for every \(A \notin \mathcal{I} \).

(ii) If \(f[\omega] \in \mathcal{I} \), then \(f \) is \(\mathcal{I} \)-invariant and it is not bi-\(\mathcal{I} \)-invariant.

(iii) If \(\text{Fix}(f) \in \mathcal{I}^* \), then \(f \) is bi-\(\mathcal{I} \)-invariant.

(iv) \(\text{Inj} \) is a \(G_\delta \) subset of \(\omega^\omega \), hence it is a Polish space.
Easy examples

(i) Note that every increasing injection is \mathcal{I}_d-invariant. In particular, $f(n) := n^2$ is \mathcal{I}_d-invariant. Moreover, in this case $f[\omega] \in \mathcal{I}_d$, hence f is not bi-\mathcal{I}_d-invariant.

(ii) Let $f : \omega \to \omega$ be given by the formulas: $f(2n) := 4n$, $f(4n + 1) = 4n + 2$, $f(4n + 3) := 2n + 1$ for $n \in \omega$. Then f is a bijection. Consider the ideal \mathcal{I} defined as follows

$$\mathcal{I} := \{A \cup B : A \in \text{Fin}, B \subseteq 2\omega\}.$$

Clearly, f is \mathcal{I}-invariant bijection which is not bi-\mathcal{I}-invariant.
Easy examples

(i) Note that every increasing injection is \mathcal{I}_d-invariant. In particular, $f(n) := n^2$ is \mathcal{I}_d-invariant. Moreover, in this case $f[\omega] \in \mathcal{I}_d$, hence f is not bi-\mathcal{I}_d-invariant.

(ii) Let $f : \omega \to \omega$ be given by the formulas: $f(2n) := 4n$, $f(4n + 1) = 4n + 2$, $f(4n + 3) := 2n + 1$ for $n \in \omega$. Then f is a bijection. Consider the ideal \mathcal{I} defined as follows

$$\mathcal{I} := \{A \cup B : A \in \text{Fin}, B \subseteq 2\omega\}.$$

Clearly, f is \mathcal{I}-invariant bijection which is not bi-\mathcal{I}-invariant.
Fact

There are three types of countably generated ideals: \(\text{Fin} \), \(\text{Fin} \oplus \mathcal{P}(\omega) \) and \(\text{Fin} \times \emptyset \).

Theorem

- Each \(f \in \text{Inj} \) is bi-Fin-invariant.
- Sets \(\text{Fin} \oplus \mathcal{P}(\omega)-\text{Inv} \), of all \(\text{Fin} \oplus \mathcal{P}(\omega) \)-invariant injections, and \(\text{bi-Fin} \oplus \mathcal{P}(\omega)-\text{Inv} \), of all bi-Fin \(\oplus \mathcal{P}(\omega) \)-invariant injections, are true \(F_\sigma \) subsets of \(\text{Inj} \).
- The sets \(\text{Fin} \times \emptyset-\text{Inv} \) and \(\text{bi-Fin} \times \emptyset-\text{Inv} \), are meager of type \(F_{\sigma\delta} \) in \(\text{Inj} \subseteq (\omega \times \omega)^{\omega \times \omega} \). Moreover, \(\text{bi-I-Inv} \) is \(F_{\sigma\delta} \)-complete.
Countably generated ideals

Fact

There are three types of countably generated ideals: \(\text{Fin} \), \(\text{Fin} \oplus \mathcal{P}(\omega) \) and \(\text{Fin} \times \emptyset \).

Theorem

- Each \(f \in \text{Inj} \) is bi-Fin-invariant.
 - Sets \(\text{Fin} \oplus \mathcal{P}(\omega)-\text{Inv} \), of all \(\text{Fin} \oplus \mathcal{P}(\omega) \)-invariant injections, and \(\text{bi-Fin} \oplus \mathcal{P}(\omega)-\text{Inv} \), of all bi-Fin \(\oplus \mathcal{P}(\omega) \)-invariant injections, are true \(F_\sigma \) subsets of \(\text{Inj} \).
 - The sets \(\text{Fin} \times \emptyset-\text{Inv} \) and \(\text{bi-Fin} \times \emptyset-\text{Inv} \), are meager of type \(F_{\sigma\delta} \) in \(\text{Inj} \subseteq (\omega \times \omega)^{\omega \times \omega} \). Moreover, \(\text{bi-I-Inv} \) is \(F_{\sigma\delta} \)-complete.
Fact

There are three types of countably generated ideals: Fin, Fin $\oplus \mathcal{P}(\omega)$ and Fin $\times \emptyset$.

Theorem

- Each $f \in \text{Inj}$ is bi-Fin-invariant.
- Sets Fin $\oplus \mathcal{P}(\omega)$-$\text{Inv}$, of all Fin $\oplus \mathcal{P}(\omega)$-invariant injections, and bi-Fin $\oplus \mathcal{P}(\omega)$-$\text{Inv}$, of all bi-Fin $\oplus \mathcal{P}(\omega)$-invariant injections, are true F_σ subsets of Inj.
- The sets Fin $\times \emptyset$-Inv and bi-Fin $\times \emptyset$-Inv, are meager of type $F_{\sigma\delta}$ in Inj $\subseteq (\omega \times \omega)^{\omega \times \omega}$. Moreover, bi-$\mathcal{I}$-$\text{Inv}$ is $F_{\sigma\delta}$-complete.
Fact

There are three types of countably generated ideals: Fin, Fin $\oplus \mathcal{P}(\omega)$ and Fin $\times \emptyset$.

Theorem

- Each $f \in \text{Inj}$ is bi-Fin-invariant.
- Sets Fin $\oplus \mathcal{P}(\omega)$-$\text{Inv}$, of all Fin $\oplus \mathcal{P}(\omega)$-invariant injections, and bi-Fin $\oplus \mathcal{P}(\omega)$-$\text{Inv}$, of all bi-Fin $\oplus \mathcal{P}(\omega)$-invariant injections, are true F_σ subsets of Inj.
- The sets Fin $\times \emptyset$-Inv and bi-Fin $\times \emptyset$-Inv, are meager of type $F_{\sigma\delta}$ in $\text{Inj} \subseteq (\omega \times \omega)^{\omega \times \omega}$. Moreover, bi-$\mathcal{I}$-$\text{Inv}$ is $F_{\sigma\delta}$-complete.
Maximal ideals

I-invariance

Let \mathcal{I} be a maximal ideal. Then $f \in \text{Inj}$ is \mathcal{I}-invariant iff $f[\omega] \in \mathcal{I}$ or $\text{Fix}(f) \in \mathcal{I}^*$.

EASY PROOF (hint: Orbit $O_f(n) := \{f^k(n) : k \in \mathbb{Z}\}$).

Corollary

Let \mathcal{I} be a maximal ideal on ω and $f \in \text{Inj}$. Then f is \mathcal{I}-invariant if and only if either $\text{Fix}(f) \in \mathcal{I}^*$ or $f[\omega] \in \mathcal{I}$.

Example

Let \mathcal{I}, \mathcal{J} be non-isomorphic maximal ideals on ω and $f \in \text{Inj}$. Then f is bi-$\mathcal{I} \oplus \mathcal{J}$-invariant iff $\text{Fix}(f) \in (\mathcal{I} \oplus \mathcal{J})^*$.
Maximal ideals

I-invariance

Let \mathcal{I} be a maximal ideal. Then $f \in \text{Inj}$ is \mathcal{I}-invariant iff $f[\omega] \in \mathcal{I}$ or $\text{Fix}(f) \in \mathcal{I}^\ast$.

EASY PROOF (hint: Orbit $O_f(n) := \{f^k(n) : k \in \mathbb{Z}\}$).

Corollary

Let \mathcal{I} be a maximal ideal on ω and $f \in \text{Inj}$. Then f is \mathcal{I}-invariant if and only if either $\text{Fix}(f) \in \mathcal{I}^\ast$ or $f[\omega] \in \mathcal{I}$.

Example

Let \mathcal{I}, \mathcal{J} be non-isomorphic maximal ideals on ω and $f \in \text{Inj}$. Then f is bi-$\mathcal{I} \oplus \mathcal{J}$-invariant iff $\text{Fix}(f) \in (\mathcal{I} \oplus \mathcal{J})^\ast$.

Jarosław Swaczyna

Some structural properties of ideal invariant injections
Maximal ideals

I-invariance

Let I be a maximal ideal. Then $f \in \text{Inj}$ is I-invariant iff $f[\omega] \in I$ or $\text{Fix}(f) \in I^*$.
EASY PROOF (hint: Orbit $O_f(n) := \{f^k(n) : k \in \mathbb{Z}\}$).

Corollary

Let I be a maximal ideal on ω and $f \in \text{Inj}$. Then f is I-invariant if and only if either $\text{Fix}(f) \in I^*$ or $f[\omega] \in I$.

Example

Let I, J be non-isomorphic maximal ideals on ω and $f \in \text{Inj}$. Then f is bi-$I \oplus J$-invariant iff $\text{Fix}(f) \in (I \oplus J)^*$.
Maximal ideals

\(\mathcal{I}\)-invariance

Let \(\mathcal{I}\) be a maximal ideal. Then \(f \in \text{Inj}\) is \(\mathcal{I}\)-invariant iff \(f[\omega] \in \mathcal{I}\) or \(\text{Fix}(f) \in \mathcal{I}^*\).

EASY PROOF (hint: Orbit \(O_f(n) := \{f^k(n) : k \in \mathbb{Z}\}\)).

Corollary

Let \(\mathcal{I}\) be a maximal ideal on \(\omega\) and \(f \in \text{Inj}\). Then \(f\) is \(\mathcal{I}\)-invariant if and only if either \(\text{Fix}(f) \in \mathcal{I}^*\) or \(f[\omega] \in \mathcal{I}\).

Example

Let \(\mathcal{I}, \mathcal{J}\) be non-isomorphic maximal ideals on \(\omega\) and \(f \in \text{Inj}\). Then \(f\) is bi-\(\mathcal{I} \oplus \mathcal{J}\)-invariant iff \(\text{Fix}(f) \in (\mathcal{I} \oplus \mathcal{J})^*\).
A submeasure on ω is a function $\varphi : \mathcal{P}(\omega) \to [0, \infty]$ such that:

- $\varphi(\emptyset) = 0$;
- if $A \subset B$ then $\varphi(A) \leq \varphi(B)$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(\{n\}) < \infty$ for all $n \in \omega$.

A submeasure φ is called a lower semicontinuous submeasure (in short, lscsm) if $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$ for all $A \subset \omega$. For any lscsm φ, we consider two ideals given by

$$Exh(\varphi) = \{A \subset \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$$

$$Fin(\varphi) = \{A \subset \omega : \varphi(A) < \infty\}.$$
A submeasure on ω is a function $\varphi: \mathcal{P}(\omega) \to [0, \infty]$ such that:
- $\varphi(\emptyset) = 0$;
- if $A \subset B$ then $\varphi(A) \leq \varphi(B)$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(\{n\}) < \infty$ for all $n \in \omega$.

A submeasure φ is called a lower semicontinuous submeasure (in short, lscsm) if $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$ for all $A \subset \omega$. For any lscsm φ, we consider two ideals given by

$$Exh(\varphi) = \{A \subset \omega: \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$$

$$Fin(\varphi) = \{A \subset \omega: \varphi(A) < \infty\}.$$
Let φ be a lscsm. Then $Exh(\varphi)$ is an $F_{\sigma\delta}$ P-ideal, $Fin(\varphi)$ is an F_{σ} ideal and $Exh(\varphi) \subset Fin(\varphi)$.

Theorem [Mazur, Solecki]

Let \mathcal{I} be an ideal on ω. Then

- \mathcal{I} is an F_{σ} ideal if and only if $\mathcal{I} = Fin(\varphi)$ for some lscsm φ.
- \mathcal{I} is an analytic P-ideal if and only if $\mathcal{I} = Exh(\varphi)$ for some lscsm φ.
- \mathcal{I} is an $F_{\sigma\delta}$ P-ideal if and only if $\mathcal{I} = Fin(\varphi) = Exh(\varphi)$ for some lscsm φ.

If \mathcal{I} is ideal on ω then it is not a G_δ set.
Let φ be a lscsm. Then $Exh(\varphi)$ is an $F_{\sigma\delta}$ P-ideal, $Fin(\varphi)$ is an F_{σ} ideal and $Exh(\varphi) \subset Fin(\varphi)$.

Theorem [Mazur, Solecki]

Let \mathcal{I} be an ideal on ω. Then

- \mathcal{I} is an F_{σ} ideal if and only if $\mathcal{I} = Fin(\varphi)$ for some lscsm φ.
- \mathcal{I} is an analytic P-ideal if and only if $\mathcal{I} = Exh(\varphi)$ for some lscsm φ.
- \mathcal{I} is an F_{σ} P-ideal if and only if $\mathcal{I} = Fin(\varphi) = Exh(\varphi)$ for some lscsm φ.

If \mathcal{I} is ideal on ω then it is not a G_δ set.
Theorem

Let φ be a lsc submeasure on ω. Let $f : \omega \to \omega$ be an increasing injection and $C_f > 0$ be a constant depending on f such that $\varphi(A) \geq C_f \varphi(f[A])$ for every $A \subseteq \omega$. Then f is invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$. Additionally, if there is a constant $C'_f > 0$ with $\varphi(A) \geq C'_f \varphi(f^{-1}[A])$ for every $A \subseteq \omega$, then f is bi-invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$.

Remark

by the lower semicontinuity of φ, one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds only for finite sets $A \subseteq \omega$. It is natural to ask whether one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds for any A with $|A| \leq n$ for some fixed n. The answer is ”no”.

Jarosław Swaczyna
Some structural properties of ideal invariant injections
Theorem

Let φ be a lsc submeasure on ω. Let $f : \omega \to \omega$ be an increasing injection and $C_f > 0$ be a constant depending on f such that $\varphi(A) \geq C_f \varphi(f[A])$ for every $A \subseteq \omega$. Then f is invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$. Additionally, if there is a constant $C'_f > 0$ with $\varphi(A) \geq C'_f \varphi(f^{-1}[A])$ for every $A \subseteq \omega$, then f is bi-invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$.

Remark

by the lower semicontinuity of φ, one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds only for finite sets $A \subseteq \omega$. It is natural to ask whether one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds for any A with $|A| \leq n$ for some fixed n. The answer is ”no”.

Jarosław Swaczyna
Some structural properties of ideal invariant injections
Ideals generated by Solecki’s submeasures

Theorem

Let φ be a lsc submeasure on ω. Let $f : \omega \to \omega$ be an increasing injection and $C_f > 0$ be a constant depending on f such that $\varphi(A) \geq C_f \varphi(f[A])$ for every $A \subseteq \omega$. Then f is invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$. Additionally, if there is a constant $C'_f > 0$ with $\varphi(A) \geq C'_f \varphi(f^{-1}[A])$ for every $A \subseteq \omega$, then f is bi-invariant with respect to the ideals $\text{Fin}(\varphi)$ and $\text{Exh}(\varphi)$.

Remark

by the lower semicontinuity of φ, one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds only for finite sets $A \subseteq \omega$. It is natural to ask whether one can assume that the condition $\varphi(A) \geq C_f \varphi(f[A])$ holds for any A with $|A| \leq n$ for some fixed n. The answer is ”no”.

Jarosław Swaczyna
Some structural properties of ideal invariant injections
Theorem

Let \(\varphi \) be a lsc submeasure on \(\omega \). Let \(f : \omega \to \omega \) be an increasing injection and \(C_f > 0 \) be a constant depending on \(f \) such that \(\varphi(A) \geq C_f \varphi(f[A]) \) for every \(A \subseteq \omega \). Then \(f \) is invariant with respect to the ideals \(\text{Fin}(\varphi) \) and \(\text{Exh}(\varphi) \). Additionally, if there is a constant \(C'_f > 0 \) with \(\varphi(A) \geq C'_f \varphi(f^{-1}[A]) \) for every \(A \subseteq \omega \), then \(f \) is bi-invariant with respect to the ideals \(\text{Fin}(\varphi) \) and \(\text{Exh}(\varphi) \).

Remark

by the lower semicontinuity of \(\varphi \), one can assume that the condition \(\varphi(A) \geq C_f \varphi(f[A]) \) holds only for finite sets \(A \subseteq \omega \). It is natural to ask whether one can assume that the condition \(\varphi(A) \geq C_f \varphi(f[A]) \) holds for any \(A \) with \(|A| \leq n \) for some fixed \(n \). The answer is ”no”.
Ideals \mathcal{I}_d and $\mathcal{I}_{(1/n)}$

Classical density ideal

$$\mathcal{I}_d := \{ A \subset \omega : \frac{\text{card}(A \cap n)}{n} \to 0 \}$$

Classical summable ideal

$$\mathcal{I}_S := \{ A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty \}$$
Theorem

Let $f : \omega \rightarrow \omega$ be an increasing injection. The following conditions are equivalent:

(i) f is bi-\mathcal{I}_d-invariant;
(ii) $d(f[\omega]) > 0$;
(iii) there is $C \in \omega$ such that $f(n) \leq Cn$ for every $n \geq 1$;
(iv) f is bi-$\mathcal{I}_{(1/n)}$-invariant.

Lower density

$$d(A) = \lim \inf \frac{\text{card}(A \cap n)}{n}$$

Thank you for your attention!