Nonseparable growth of ω
supporting a strictly positive measure

Tomasz Żuchowski

Mathematical Institute, University of Wrocław

Winter School in Abstract Analysis
Hejnice, January 2016
Definitions

Growth

A compact space K is a **growth** of ω if there exists a compactification $\gamma\omega$ of ω such that $K \simeq \gamma\omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.

A finitely additive measure μ on a Boolean algebra \mathcal{A} is **strictly positive** if $\mu(a) > 0$ for any $a \in \mathcal{A}^+$.

Remark

There is a strictly positive measure on a Boolean algebra \mathcal{A} iff there is a strictly positive measure on the Stone space $\text{ult}(\mathcal{A})$.

Definitions

Growth

A compact space K is a **growth** of ω if there exists a compactification $\gamma\omega$ of ω such that $K \cong \gamma\omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.
Definitions

Growth
A compact space K is a **growth** of ω if there exists a compactification $\gamma\omega$ of ω such that $K \sim \gamma\omega \setminus \omega$.

Strictly positive measure
A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.
A finitely additive measure μ on a Boolean algebra \mathcal{A} is **strictly positive** if $\mu(a) > 0$ for any $a \in \mathcal{A}^+$.
Definitions

Growth

A compact space K is a **growth** of ω if there exists a compactification $\gamma \omega$ of ω such that $K \simeq \gamma \omega \setminus \omega$.

Strictly positive measure

A measure μ on a topological space X is **strictly positive** if $\mu(U) > 0$ for any open $U \subseteq X$.

A finitely additive measure μ on a Boolean algebra \mathcal{A} is **strictly positive** if $\mu(a) > 0$ for any $a \in \mathcal{A}^+$.

Remark

There is a strictly positive measure on a Boolean algebra \mathcal{A} iff there is a strictly positive measure on the Stone space $\text{ult}(\mathcal{A})$.
Trivial examples

Any separable compact space is a growth of ω.
Growth of ω

Trivial examples
Any separable compact space is a growth of ω.

Fact
A Boolean algebra \mathcal{A} can be embedded in $\mathcal{P}(\omega)/\text{fin}$ iff $\text{ult}(\mathcal{A})$ is a growth of ω.
Trivial examples

Any separable compact space is a growth of ω.

Fact

A Boolean algebra \mathcal{A} can be embedded in $\mathcal{P}(\omega)/\text{fin}$ iff $\text{ult}(\mathcal{A})$ is a growth of ω.

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathcal{P}(\omega)/\text{fin}$.
Trivial examples
Any separable compact space is a growth of ω.

Fact
A Boolean algebra \mathcal{A} can be embedded in $\mathcal{P}(\omega)/\text{fin}$ iff $\text{ult}(\mathcal{A})$ is a growth of ω.

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathcal{P}(\omega)/\text{fin}$.

Lebesgue measure algebra
Let $\mathcal{B} = \text{Bor}[0,1]/\mathcal{N}$, where $\mathcal{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$.
Growth of ω

Trivial examples

Any separable compact space is a growth of ω.

Fact

A Boolean algebra \mathcal{A} can be embedded in $\mathcal{P}(\omega)/\text{fin}$ iff $\text{ult}(\mathcal{A})$ is a growth of ω.

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathcal{P}(\omega)/\text{fin}$.

Lebesgue measure algebra

Let $\mathcal{B} = \text{Bor}[0,1]/\mathcal{N}$, where $\mathcal{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$. It has nonseparable $\text{ult}(\mathcal{B})$ and the measure λ transfers to a strictly positive measure on $\text{ult}(\mathcal{B})$.
Growth of ω

Trivial examples
Any separable compact space is a growth of ω.

Fact
A Boolean algebra \mathcal{A} can be embedded in $\mathcal{P}(\omega)/\text{fin}$ iff $\text{ult}(\mathcal{A})$ is a growth of ω.

Parovičenko Theorem: Any Boolean algebra of size $\leq \omega_1$ can be embedded into $\mathcal{P}(\omega)/\text{fin}$.

Lebesgue measure algebra
Let $\mathcal{B} = \text{Bor}[0,1]/\mathcal{N}$, where $\mathcal{N} = \{A \subseteq [0,1] : \lambda(A) = 0\}$.
It has nonseparable $\text{ult}(\mathcal{B})$ and the measure λ transfers to a strictly positive measure on $\text{ult}(\mathcal{B})$. Assuming CH, by Parovičenko $\text{ult}(\mathcal{B})$ embeds into $\mathcal{P}(\omega)/\text{fin}$, so it is a growth of ω.
However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathcal{P}(\omega)/\text{fin}$.
Problem

However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathcal{P}(\omega)/\text{fin}$.

Question

Is there a ZFC example of nonseparable growth of ω which supports a strictly positive measure?
However...

Dow & Hart: Under Open Coloring Axiom the measure algebra does not embed into $\mathcal{P}(\omega)/\text{fin}$.

Question

Is there a ZFC example of nonseparable growth of ω which supports a strictly positive measure? Equivalently: is there a ZFC example of a Boolean algebra with nonseparable Stone space that supports a strictly positive measure and can be embedded into $\mathcal{P}(\omega)/\text{fin}$?
Bell, van Mill and Todorčević: ZFC examples of compactifications of ω with nonseparable ccc remainders
Related results

- **Bell, van Mill and Todorčević:** ZFC examples of compactifications of ω with nonseparable ccc remainders

- **Drygier & Plebanek:** under $b = c$ (or some weaker statement) an example of $\gamma\omega$ with nonseparable remainder supporting a strictly positive measure
Bell, van Mill and Todorčević: ZFC examples of compactifications of ω with nonseparable ccc remainders

Drygier & Plebanek: under $b = c$ (or some weaker statement) an example of $\gamma \omega$ with nonseparable remainder supporting a strictly positive measure

Borodulin-Nadzieja & Inamdar: ZFC example of nonseparable growth of ω supporting a strictly positive measure
Asymptotic density

$$d(A) = \lim_{n \to \infty} \frac{|\{m < n : m \in A\}|}{n},$$

if the limit exists for $A \subseteq \omega$. As $d(A) = 0$ for finite A, we can define also asymptotic density on $\mathcal{P}(\omega)/\text{fin}$.
Asymptotic density

\[d(A) = \lim_{n \to \infty} \frac{|\{m < n : m \in A\}|}{n}, \]

if the limit exists for \(A \subseteq \omega \). As \(d(A) = 0 \) for finite \(A \), we can define also asymptotic density on \(\mathcal{P}(\omega)/\text{fin} \).

Measure algebra, continued

Frankiewicz & Gutek: Under CH, there is an embedding \(\Phi : \mathcal{B} \to \mathcal{P}(\omega)/\text{fin} \) such that \(\lambda(b) = d(\Phi(b)) \) for any \(b \in \mathcal{B} \).
Main result

Theorem

There exists a Boolean algebra \mathcal{A} with the following properties:

- $\text{ult}(\mathcal{A})$ is not separable
- there exists a strictly positive measure μ on \mathcal{A}
- there exists an embedding $\Psi : \mathcal{A} \rightarrow \mathcal{P}(\omega)/\text{fin}$ such that $\mu(a) = d(\Psi(a))$ for any $a \in \mathcal{A}$.
Notations

\[
\{ P_\alpha : \alpha < c \} = [2^\omega]^{\leq \omega} \\
\{ B_\alpha : \alpha < c \} - \text{an almost disjoint family in } \mathcal{P}(\omega).
\]
Construction

Notations

\[\{ P_\alpha : \alpha < c \} = [2^\omega]^{\leq \omega} \]
\[\{ B_\alpha : \alpha < c \} \text{- an almost disjoint family in } \mathcal{P}(\omega). \]

Definition of generators

\[P_\alpha = \{ t_\alpha^n : n \in \omega \} \subseteq 2^\omega \]
\[B_\alpha = \{ m_\alpha^i : i \in \omega \} \subseteq \omega \]
Construction

Notations

\[\{ P_\alpha : \alpha < c \} = [2^\omega]^{\leq \omega} \]
\[\{ B_\alpha : \alpha < c \} - \text{an almost disjoint family in } \mathcal{P}(\omega). \]

Definition of generators

\[P_\alpha = \{ t^\alpha_n : n \in \omega \} \subseteq 2^\omega \]
\[B_\alpha = \{ m^\alpha_i : i \in \omega \} \subseteq \omega \]

\[\varphi^\alpha_0 = t^\alpha_0|_{\{m^\alpha_0, m^\alpha_1\}}, \quad \varphi^\alpha_1 = t^\alpha_1|_{\{m^\alpha_2, m^\alpha_3, m^\alpha_4\}}, \quad \varphi^\alpha_2 = t^\alpha_2|_{\{m^\alpha_5, m^\alpha_6, m^\alpha_7, m^\alpha_8\}} , \text{ etc.} \]
Notations

\{ P_\alpha : \alpha < c \} = [2^\omega]^{\leq \omega}
\{ B_\alpha : \alpha < c \} - an almost disjoint family in \mathcal{P}(\omega).

Definition of generators

\[P_\alpha = \{ t_\alpha^n : n \in \omega \} \subseteq 2^\omega \]
\[B_\alpha = \{ m_\alpha^i : i \in \omega \} \subseteq \omega \]

\[\varphi_0^\alpha = t_0^\alpha | \{ m_0^\alpha, m_1^\alpha \}, \quad \varphi_1^\alpha = t_1^\alpha | \{ m_2^\alpha, m_3^\alpha, m_4^\alpha \}, \quad \varphi_2^\alpha = t_2^\alpha | \{ m_5^\alpha, m_6^\alpha, m_7^\alpha, m_8^\alpha \}, \text{ etc.} \]

We define \(U_\alpha = \bigcup_{i \in \omega} [\varphi_i^\alpha] \).
Construction

Notations

\[\{ P_\alpha : \alpha < c \} = [2^\omega]^{\leq \omega} \]

\[\{ B_\alpha : \alpha < c \} \text{- an almost disjoint family in } \mathcal{P}(\omega). \]

Definition of generators

\[P_\alpha = \{ t_\alpha^n : n \in \omega \} \subseteq 2^\omega \]

\[B_\alpha = \{ m_\alpha^i : i \in \omega \} \subseteq \omega \]

\[\varphi_0^\alpha = t_0^\alpha|\{m_0^\alpha, m_1^\alpha\}, \quad \varphi_1^\alpha = t_1^\alpha|\{m_2^\alpha, m_3^\alpha, m_4^\alpha\}, \quad \varphi_2^\alpha = t_2^\alpha|\{m_5^\alpha, m_6^\alpha, m_7^\alpha, m_8^\alpha\}, \text{ etc.} \]

We define \(U_\alpha = \bigcup_{i \in \omega} [\varphi_i^\alpha] \).

Definition of algebra

\[\mathcal{A} = \text{alg} \left(\text{Clop}(2^\omega) \cup \{ U_\alpha : \alpha < c \} \right) \]
Sketch of the proof of main result

- \(\lambda \) is a strictly positive measure on \(\mathcal{A} \)
Sketch of the proof of main result

- λ is a strictly positive measure on \mathcal{A}
- $\text{ult}(\mathcal{A})$ is not separable
Sketch of the proof of main result

- λ is a strictly positive measure on \mathcal{A}
- $\text{ult}(\mathcal{A})$ is not separable
- There exists a Boolean embedding $\Psi_0 : \text{Clop}(2^\omega) \to \mathcal{P}(\omega)/\text{fin}$ transferring measure to asymptotic density
Sketch of the proof of main result

- λ is a strictly positive measure on \mathcal{A}
- $\text{ult}(\mathcal{A})$ is not separable
- There exists a Boolean embedding $\Psi_0 : \text{Clop}(2^\omega) \to \mathcal{P}(\omega)/\text{fin}$ transferring measure to asymptotic density
- We define for any $\alpha < c$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathcal{A} \to \mathcal{P}(\omega)/\text{fin}$
Sketch of the proof of main result

- λ is a strictly positive measure on \mathcal{A}
- $\text{ult}(\mathcal{A})$ is not separable
- there exists a Boolean embedding $\Psi_0 : \text{Clop}(2^\omega) \to \mathcal{P}(\omega)/\text{fin}$ transferring measure to asymptotic density
- we define for any $\alpha < c$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathcal{A} \to \mathcal{P}(\omega)/\text{fin}$
- $\Psi : \mathcal{A} \to \mathcal{P}(\omega)/\text{fin}$ also transfers the Lebesgue measure to the asymptotic density
Sketch of the proof of main result

- λ is a strictly positive measure on \mathcal{A}
- $\text{ult}(\mathcal{A})$ is not separable
- There exists a Boolean embedding $\Psi_0 : \text{Clop}(2^\omega) \to \mathcal{P}(\omega)/\text{fin}$ transferring measure to asymptotic density
- We define for any $\alpha < \mathfrak{c}$ such $\Psi_0(U_\alpha)$ that $\lambda(U_\alpha) = d(\Psi_0(U_\alpha))$ and we can extend Ψ_0 to a homomorphism $\Psi : \mathcal{A} \to \mathcal{P}(\omega)/\text{fin}$
- $\Psi : \mathcal{A} \to \mathcal{P}(\omega)/\text{fin}$ also transfers the Lebesgue measure to the asymptotic density
- The homomorphism Ψ is an embedding, which is an easy corollary from transferring the measure to density
Theorem (Borodulin-Nadzieja, Inamdar, 2015)

There is a Boolean algebra $\mathcal{I} \subseteq \mathcal{P}(\omega)/\text{Fin}$ such that

- \mathcal{I} is not σ-centered,
- $\mathcal{I} \Vdash \mathcal{B} \text{ "}\mathcal{I} \text{ is } \sigma\text{-centered".}$
Theorem (Borodulin-Nadzieja, Inamdar, 2015)

There is a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(\omega)/\text{Fin}$ such that

- \mathcal{B} is not σ-centered,
- $\vdash_{\mathcal{B}} \text{"}\mathcal{B} \text{ is } \sigma \text{-centered."}$

Theorem (Kamburelis, 80’)

If \mathcal{C} is a Boolean algebra and $\vdash_{\mathcal{B}} \text{"}\mathcal{B} \text{ is } \sigma \text{-centered"}$, then \mathcal{C} supports a strictly positive measure.