Strong Homology

Jeffrey Bergfalk

Winter School

February 2016
Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes.
Theorem (Eilenberg Steenrod 1945)

Exactly one homology theory H_\ast satisfies the Eilenberg-Steenrod axioms on the category of finite CW-complexes.

Formal definition

The Eilenberg–Steenrod axioms apply to a sequence of functors H_n from the category of pairs (X, A) of topological spaces to the category of abelian groups, together with a natural transformation $\partial : H_i(X, A) \to H_{i-1}(A)$ called the **boundary map** (here $H_{i-1}(A)$ is a shorthand for $H_{i-1}(A, \emptyset)$). The axioms are:

1. **Homotopy**: Homotopic maps induce the same map in homology. That is, if $g : (X, A) \to (Y, B)$ is homotopic to $h : (X, A) \to (Y, B)$, then their induced maps are the same.
2. **Excision**: If (X, A) is a pair and U is a subset of X such that the closure of U is contained in the interior of A, then the inclusion map $i : (X - U, A - U) \to (X, A)$ induces an isomorphism in homology.
3. **Dimension**: Let P be the one-point space; then $H_n(P) = 0$ for all $n \neq 0$.
4. **Additivity**: If $X = \bigsqcup X_\alpha$, the disjoint union of a family of topological spaces X_α, then $H_n(X) \cong \bigoplus H_n(X_\alpha)$.
5. **Exactness**: Each pair (X, A) induces a long exact sequence in homology, via the inclusions $i : A \to X$ and $j : X \to (X, A)$:

$$\cdots \to H_n(A) \xrightarrow{i^*} H_n(X) \xrightarrow{j^*} H_n(X, A) \xrightarrow{\partial^*} H_{n-1}(A) \to \cdots$$

If P is the one point space then $H_0(P)$ is called the **coefficient group**. For example, singular homology (taken with integer coefficients, as is most common) has as coefficients the integers.
A homology theory H_* is additive if for every n and every

$$X = \bigsqcup_{\alpha \in A} X_{\alpha}$$

the inclusion maps $i_{\alpha} : X_{\alpha} \to X$ induce an isomorphism

$$i_* : \bigoplus_{\alpha \in A} H_n(X_{\alpha}) \to H_n(\bigsqcup_{\alpha \in A} X_{\alpha})$$
Additivity

Definition

A homology theory H_\ast is *additive* if for every n and every

$$X = \coprod_{\alpha \in A} X_\alpha$$

the inclusion maps $i_\alpha : X_\alpha \to X$ induce an isomorphism

$$i_\ast : \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\coprod_{\alpha \in A} X_\alpha)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_\ast satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.
Additivity

Definition

A homology theory H_* is additive if for every n and every

$$X = \bigsqcup_{\alpha \in A} X_\alpha$$

the inclusion maps $i_\alpha : X_\alpha \to X$ induce an isomorphism

$$i_* : \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n(\bigsqcup_{\alpha \in A} X_\alpha)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.

In other words, there’s exactly one way to extend Eilenberg and Steenrod’s H_* continuously.
Additivity

Definition

A homology theory H_* is *additive* if for every n and every

$$X = \bigsqcup_{\alpha \in A} X_\alpha$$

the inclusion maps $i_\alpha : X_\alpha \to X$ induce an isomorphism

$$i_* : \bigoplus_{\alpha \in A} H_n(X_\alpha) \to H_n \left(\bigsqcup_{\alpha \in A} X_\alpha \right)$$

Theorem (Milnor 1960)

Exactly one additive homology theory H_* satisfies the Eilenberg-Steenrod axioms on the category of CW-complexes.

In other words, there’s exactly one way to extend Eilenberg and Steenrod’s H_* continuously.

Henceforth let H_* denote this (unique) extension to CW.
A number of extensions of H_\ast in turn have been proposed.

Prominent among these is strong homology \overline{H}_\ast:

1. \overline{H}_\ast equals H_\ast on CW.
2. \overline{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \overline{H}_\ast is a Steenrod-type homology theory.
4. \overline{H}_\ast is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \overline{H}_\ast additive on CW, and for finite sums, respectively.

So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$\overline{H}_2(X) = 0$.

Mardešić and Prasolov directly computed, though, that $\overline{H}_2(X)$ is the quotient of coherent families by trivial families; $\overline{H}_2(X) = 0$, in other words, iff every coherent family is trivial.

But this, as they and others would show, is a question independent of ZFC.
A number of extensions of H_\ast in turn have been proposed. Prominent among these is \textit{strong homology} \bar{H}_\ast:

1. \bar{H}_\ast equals H_\ast on CW.
2. \bar{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \bar{H}_\ast is a Steenrod-type homology theory.
4. \bar{H}_\ast is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked Is strong homology additive? (1) and (2) imply \bar{H}_\ast additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$\bar{H}_2(X) = 0$.

Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X) = 0$, in other words, iff every coherent family is trivial.

But this, as they and others would show, is a question independent of ZFC.
A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_*:

1. \bar{H}_* equals H_* on CW.
A number of extensions of H_\ast in turn have been proposed. Prominent among these is \textit{strong homology} \bar{H}_\ast:

1. \bar{H}_\ast equals H_\ast on CW.
2. \bar{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).

Mardešić and Prasolov directly computed, though, that $\bar{H}_2(X)$ is the quotient of coherent families by trivial families; $\bar{H}_2(X) = 0$, in other words, iff every coherent family is trivial. But this, as they and others would show, is a question independent of ZFC.
A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \overline{H}_*:

1. \overline{H}_* equals H_* on CW.
2. \overline{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \overline{H}_* is a Steenrod-type homology theory.
A number of extensions of H_\ast in turn have been proposed. Prominent among these is strong homology \widetilde{H}_\ast:

1. \widetilde{H}_\ast equals H_\ast on CW.
2. \widetilde{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \widetilde{H}_\ast is a Steenrod-type homology theory.
4. \widetilde{H}_\ast is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked whether \widetilde{H}_\ast is additive. (1) and (2) imply \widetilde{H}_\ast is additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X. $\widetilde{H}_2(X) = 0$. Mardešić and Prasolov directly computed, though, that $\widetilde{H}_2(X)$ is the quotient of coherent families by trivial families; $\widetilde{H}_2(X) = 0$, in other words, iff every coherent family is trivial. But this, as they and others would show, is a question independent of ZFC.
A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \tilde{H}_*:

1. \tilde{H}_* equals H_* on CW.
2. \tilde{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \tilde{H}_* is a Steenrod-type homology theory.
4. \tilde{H}_* is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?
A number of extensions of H_\ast in turn have been proposed. Prominent among these is strong homology \tilde{H}_\ast:

1. \tilde{H}_\ast equals H_\ast on CW.
2. \tilde{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \tilde{H}_\ast is a Steenrod-type homology theory.
4. \tilde{H}_\ast is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \tilde{H}_\ast additive on CW, and for finite sums, respectively.
Additivity

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \bar{H}_*:

1. \bar{H}_* equals H_* on CW.
2. \bar{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \bar{H}_* is a Steenrod-type homology theory.
4. \bar{H}_* is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

\textit{Is strong homology additive?}

(1) and (2) imply \bar{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\bar{H}_2(X) = 0.$$
Additivity

A number of extensions of H_* in turn have been proposed. Prominent among these is strong homology \tilde{H}_*:

1. \tilde{H}_* equals H_* on CW.
2. \tilde{H}_* satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \tilde{H}_* is a Steenrod-type homology theory.
4. \tilde{H}_* is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \tilde{H}_* additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\tilde{H}_2(X) = 0.$$

Mardešić and Prasolov directly computed, though, that $\tilde{H}_2(X)$ is the quotient of coherent families by trivial families; $\tilde{H}_2(X) = 0$, in other words, iff every coherent family is trivial.
A number of extensions of H_\ast in turn have been proposed. Prominent among these is *strong homology* \tilde{H}_\ast:

1. \tilde{H}_\ast equals H_\ast on CW.
2. \tilde{H}_\ast satisfies the Eilenberg-Steenrod axioms on paracompact pairs (X, A).
3. \tilde{H}_\ast is a Steenrod-type homology theory.
4. \tilde{H}_\ast is strong-shape-invariant.

It was against this background that Sibe Mardešić and Andrei Prasolov asked

Is strong homology additive?

(1) and (2) imply \tilde{H}_\ast additive on CW, and for finite sums, respectively. So Mardešić and Prasolov began by considering the strong homology of an infinite countable sum Y of Hawaiian earrings X.

$$\tilde{H}_2(X) = 0.$$

Mardešić and Prasolov directly computed, though, that $\tilde{H}_2(X)$ is the quotient of coherent families by trivial families; $\tilde{H}_2(X) = 0$, in other words, iff every coherent family is trivial. But this, as they and others would show, is a question independent of ZFC.