The Bolzano property

Przemysław Tkacz

Cardnial Stefan Wyszyski University in Warsaw

February 2, 2016

Introduction

Theorem (Bolzano 1817)
If a continuous $f:[a, b] \rightarrow R$ and

$$
f(a) \cdot f(b) \leq 0
$$

then there is $c \in[a, b]$ such that $f(c)=0$.

Introduction

$I^{n}=[0,1]^{n}: n$-dimensional cube in \mathbf{R}^{n}.
Its i-th opposite faces are defined as follows:

$$
I_{i}^{-}:=\left\{x \in I^{n}: x(i)=0\right\}, I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\}
$$

Theorem (Poincaré 1883)

If a continuous

$$
\begin{aligned}
f & =\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
f_{i}\left(I_{i}^{-}\right) & \subset(-\infty, 0], \quad f_{i}\left(I_{i}^{+}\right) \subset[0, \infty),
\end{aligned}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

Theorem (Poincaré 1883)

If a continuous

$$
\begin{aligned}
f & =\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
f_{i}\left(l_{i}^{-}\right) & \subset(-\infty, 0], \quad f_{i}\left(l_{i}^{+}\right) \subset[0, \infty),
\end{aligned}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

Theorem (Miranda 1940)

The Poincaré theorem is equivalent to the Brouwer fixed point theorem.

The n-dimensional Bolzano property

Definition (Kulpa 1994)

The topological space X has the n-dimensional Bolzano property if there exists a family $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ of pairs of non-empty disjoint closed subsets such that for every continuous

$$
\begin{gathered}
f=\left(f_{1}, \ldots, f_{n}\right): X \rightarrow R^{n}, \\
\forall_{i \leq n} f_{i}\left(A_{i}\right) \subset(-\infty, 0], \text { and } f_{i}\left(B_{i}\right) \subset[0, \infty),
\end{gathered}
$$

there exists $c \in X$ such that $f(c)=0$.
$\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}:$ an n-dimensional boundary system

The n-dimensional Bolzano property

Definition (Bolzano property)

The topological space X has the n-dimensional Bolzano property if there exist a family $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ of pairs of non-empty disjoint closed subsets such that for every family $\left\{\left(H_{i}^{-}, H_{i}^{+}\right): i=1, \ldots, n\right\}$ of closed sets such that

$$
\text { for each } i \leq n A_{i} \subset H_{i}^{-}, B_{i} \subset H_{i}^{+} \text {and } H_{i}^{-} \cup H_{i}^{+}=X
$$

we have

$$
\bigcap\left\{H_{i}^{-} \cap H_{i}^{+}: i=1, \ldots, n\right\} \neq \emptyset .
$$

Theorem

If X has the n-dimensional Bolzano property. Then X has the Kulpa n-dimensional Bolzano property.

The n-dimensional Bolzano property

Theorem

If X has the n-dimensional Bolzano property. Then X has the Kulpa n-dimensional Bolzano property.

Theorem

If X is perfectly normal and has the Kulpa n-dimensional Bolzano property. Than X has the n-dimensional Bolzano property.

Properties

Theorem

Let $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ be the n-dimensional boundary system in T_{5} space X. Then for each $i \leq n A_{i}, B_{i}$ have an $(n-1)$-dimensional Bolzano property.
Moreover the families

$$
\left\{\left(A_{i} \cap A_{j}, A_{i} \cap B_{j}\right): j \neq i\right\},\left\{\left(B_{i} \cap A_{j}, B_{i} \cap B_{j}\right): j \neq i\right\}
$$

are an ($n-1$)-dimensional boundary systems in A_{i}, B_{i} respectively.

Properties

Theorem

Let $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ be the n-dimensional boundary system in T_{5} space X. Then for each $i \leq n A_{i}, B_{i}$ have an $(n-1)$-dimensional Bolzano property.
Moreover the families

$$
\left\{\left(A_{i} \cap A_{j}, A_{i} \cap B_{j}\right): j \neq i\right\},\left\{\left(B_{i} \cap A_{j}, B_{i} \cap B_{j}\right): j \neq i\right\}
$$

are an ($n-1$)-dimensional boundary systems in A_{i}, B_{i} respectively.

Corollary

Let $I_{1}, I_{2} \subset\{1, \ldots, n\}, I_{1} \cap I_{2}=\emptyset$. Then the subspace

$$
\bigcap_{i \in I_{1}} A_{i} \cap \bigcap_{i \in I_{2}} B_{i}
$$

has an $\left(n-\left(\operatorname{card}\left(I_{1}\right)+\operatorname{card}\left(I_{2}\right)\right)\right)$-dimensional Bolzano property.

An n-cube-like polyhedron

An n-cube-like polyhedron

An n-cube-like polyhedron

| \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \square |
| \square |
\square	\square	\square				\square	\square	\square
\square	\square	\square				\square	\square	\square
\square	\square	\square				\square	\square	\square
\square								
\square								
\square								

An n-cube-like polyhedron

An n-cube-like polyhedron

An n-cube-like polyhedron

An n-cube-like polyhedron

Theorem

Let ($\bar{K}, \overline{\mathcal{K}}$) be an n-cube-like polyhedron in R^{m}. Then \bar{K} has an n-dimensional Bolzano property.

The Steinhaus chains

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

"1"-white "2"-black

The Steinhaus chains

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

"1"-white "2"-black

The Steinhaus chains

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

"1"-white " 2 "-black

The Steinhaus chains

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

"1"-white " 2 "-black

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^{n} onto k^{n} cubes and an arbitrary coloring function $F: T(k) \rightarrow\{1, \ldots n\}$ for some natural number $i \in\{1, \ldots n\}$ there exists an i-th colored chain P_{1}, \ldots, P_{r} such that

$$
P_{1} \cap I_{i}^{+} \neq \emptyset \text { and } P_{r} \cap I_{i}^{-} \neq \emptyset .
$$

Theorem (Topological version)

Let $\left\{U_{i}: i=1, \cdots, n\right\}$ be an open covering of I^{n}. Then for some $i \in\{1, \ldots n\}$ there exists continuum $W \subset U_{i}$ such that

$$
W \cap I_{i}^{-} \neq \emptyset \neq W \cap I_{i}^{+} .
$$

Theorem (PT and Turzański)

The following statements are equivalent:

1. Theorem(on the existence of a chain)
2. The Poincaré theorem
3. The Brouwer Fixed Point theorem.

Theorem (Michalik, P T, Turzański 2015)

Let \mathcal{K}^{n} be an n-cube-like complex. Then for every map
$\phi:\left|\mathcal{K}^{n}\right| \rightarrow\{1, \ldots, n\}$ there exist $i \in\{1, \ldots, n\}$ and i-th colored chain
$\left\{s_{1}, \ldots, s_{m}\right\} \subset\left|\mathcal{K}^{n}\right|$ such that

$$
s_{1} \in \mathcal{F}_{i}^{-} \text {and } s_{m} \in \mathcal{F}_{i}^{+}
$$

(The sequence $\left\{s_{1}, \ldots, s_{m}\right\} \subset\left|\mathcal{K}^{n}\right|$ is a chain if for each $i \in\{1, \ldots, m-1\}$ we have $\left\{s_{i}, s_{i+1}\right\} \in \mathcal{K}^{n}$.)

Let us consider the inverse system $\left\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\right\}$ where:
(i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with n-dimensional boundary system $\left\{\left(A_{i}^{\sigma}, B_{i}^{\sigma}\right): i=1, \ldots, n\right\}$.
(ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \rightarrow X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}\left(A_{i}^{\sigma}\right)=A_{i}^{\rho}, \pi_{\rho}^{\sigma}\left(B_{i}^{\sigma}\right)=B_{i}^{\rho}$.

The inverse system

Let us consider the inverse system $\left\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\right\}$ where:
(i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with n-dimensional boundary system $\left\{\left(A_{i}^{\sigma}, B_{i}^{\sigma}\right): i=1, \ldots, n\right\}$.
(ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \rightarrow X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}\left(A_{i}^{\sigma}\right)=A_{i}^{\rho}, \pi_{\rho}^{\sigma}\left(B_{i}^{\sigma}\right)=B_{i}^{\rho}$.

Theorem

The space $X=\lim \left\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\right\}$ has n-dimensional Bolzano property.

The inverse system

Let us consider the inverse system $\left\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\right\}$ where:
(i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with n-dimensional boundary system $\left\{\left(A_{i}^{\sigma}, B_{i}^{\sigma}\right): i=1, \ldots, n\right\}$.
(ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \rightarrow X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}\left(A_{i}^{\sigma}\right)=A_{i}^{\rho}, \pi_{\rho}^{\sigma}\left(B_{i}^{\sigma}\right)=B_{i}^{\rho}$.

Theorem

The space $X=\lim \left\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\right\}$ has n-dimensional Bolzano property.

Corollary

Pseudoarc has the Bolzano property.

The Bolzano property and the dimension

Theorem

Let X be a normal space. $\operatorname{dim} X \geq n$ iff there exist a family $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ of pairs of non-empty disjoint closed subsets such that for every family $\left\{L_{i}: i=1, \ldots, n\right\}$ where L_{i} is a partition between A_{i} and B_{i} we have

$$
\bigcap_{i=1}^{n} L_{i} \neq \emptyset .
$$

The Bolzano property and the dimension

Theorem

Let X be a normal space. $\operatorname{dim} X \geq n$ iff there exist a family $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ of pairs of non-empty disjoint closed subsets such that for every family $\left\{L_{i}: i=1, \ldots, n\right\}$ where L_{i} is a partition between A_{i} and B_{i} we have

$$
\bigcap_{i=1}^{n} L_{i} \neq \emptyset .
$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $\operatorname{dim} X \geq n$.

The Bolzano property and the dimension

Theorem

Let X be a normal space. $\operatorname{dim} X \geq n$ iff there exist a family $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, n\right\}$ of pairs of non-empty disjoint closed subsets such that for every family $\left\{L_{i}: i=1, \ldots, n\right\}$ where L_{i} is a partition between A_{i} and B_{i} we have

$$
\bigcap_{i=1}^{n} L_{i} \neq \emptyset .
$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $\operatorname{dim} X \geq n$.

Theorem

If X is a perfectly normal space X and $\operatorname{dim} X \geq n$. Then X has n-dimensional Bolzano property.

Problem

Is there a gap beetween the Bolzano property and the dimension of X ?

