The Bolzano property

Przemysław Tkacz

Cardnial Stefan Wyszyski University in Warsaw

February 2, 2016

Theorem (Bolzano 1817)

If a continuous $f : [a, b] \rightarrow R$ and

 $f(a) \cdot f(b) \leq 0$,

then there is $c \in [a, b]$ such that f(c) = 0.

Introduction

 $I^n = [0, 1]^n$: *n*-dimensional cube in **R**^{*n*}. Its *i*-th opposite faces are defined as follows:

$$I_i^-$$
: = { $x \in I^n$: $x(i) = 0$ }, I_i^+ : = { $x \in I^n$: $x(i) = 1$ }

Theorem (Poincaré 1883)

If a continuous

$$f = (f_1, f_2, \dots, f_n) : I^n \to \mathbb{R}^n,$$

 $f_i(I_i^-) \subset (-\infty, 0], \qquad f_i(I_i^+) \subset [0, \infty),$
then there is $c \in I^n$ such that $f(c) = (0, 0, \dots, 0)$

Theorem (Poincaré 1883)

If a continuous

$$f = (f_1, f_2, \dots, f_n) : I^n \to \mathbb{R}^n,$$
$$f_i(I_i^-) \subset (-\infty, 0], \qquad f_i(I_i^+) \subset [0, \infty),$$
then there is $c \in I^n$ such that $f(c) = (0, 0, \dots, 0)$

Theorem (Miranda 1940)

The Poincaré theorem is equivalent to the Brouwer fixed point theorem.

Definition (Kulpa 1994)

The topological space X has the n-dimensional Bolzano property if there exists a family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of non-empty disjoint closed subsets such that for every continuous

$$f = (f_1,\ldots,f_n): X \to \mathbb{R}^n,$$

$$\forall_{i\leq n} f_i(A_i) \subset (-\infty, 0], \text{ and } f_i(B_i) \subset [0, \infty),$$

there exists $c \in X$ such that f(c) = 0.

 $\{(A_i, B_i) : i = 1, ..., n\}$: an n-dimensional boundary system

Definition (Bolzano property)

The topological space X has the n-dimensional Bolzano property if there exist a family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{(H_i^-, H_i^+) : i = 1, ..., n\}$ of closed sets such that

for each
$$i \leq n A_i \subset H_i^-, B_i \subset H_i^+$$
 and $H_i^- \cup H_i^+ = X$

we have

$$\bigcap \{H_i^- \cap H_i^+ : i = 1, \dots, n\} \neq \emptyset.$$

If X has the n-dimensional Bolzano property. Then X has the Kulpa n-dimensional Bolzano property.

If X has the n-dimensional Bolzano property. Then X has the Kulpa n-dimensional Bolzano property.

Theorem

If X is perfectly normal and has the Kulpa n-dimensional Bolzano property. Than X has the n-dimensional Bolzano property.

Let $\{(A_i, B_i) : i = 1, ..., n\}$ be the n-dimensional boundary system in T_5 space X. Then for each $i \leq n A_i, B_i$ have an (n - 1)-dimensional Bolzano property. Moreover the families

 $\{(A_i \cap A_j, A_i \cap B_j) : j \neq i\}, \{(B_i \cap A_j, B_i \cap B_j) : j \neq i\}$

are an (n-1)-dimensional boundary systems in A_i , B_i respectively.

Let $\{(A_i, B_i) : i = 1, ..., n\}$ be the n-dimensional boundary system in T_5 space X. Then for each $i \leq n A_i, B_i$ have an (n - 1)-dimensional Bolzano property. Moreover the families

$$\{(A_i \cap A_j, A_i \cap B_j) : j \neq i\}, \{(B_i \cap A_j, B_i \cap B_j) : j \neq i\}$$

are an (n-1)-dimensional boundary systems in A_i, B_i respectively.

Corollary

Let $I_1, I_2 \subset \{1, \ldots, n\}$, $I_1 \cap I_2 = \emptyset$. Then the subspace

$$\bigcap_{i\in I_1}A_i\cap\bigcap_{i\in I_2}B_i$$

has an $(n - (card(I_1) + card(I_2)))$ -dimensional Bolzano property.

Theorem

Let $(\overline{K}, \overline{K})$ be an n-cube-like polyhedron in \mathbb{R}^m . Then \overline{K} has an n-dimensional Bolzano property.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an *i*-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an i-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an i-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an i-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an i-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \rightarrow \{1, ...n\}$ for some natural number $i \in \{1, ...n\}$ there exists an i-th colored chain $P_1, ..., P_r$ such that

 $P_1 \cap I_i^+ \neq \emptyset$ and $P_r \cap I_i^- \neq \emptyset$.

Theorem (Topological version)

Let $\{U_i : i = 1, \dots, n\}$ be an open covering of I^n . Then for some $i \in \{1, \dots, n\}$ there exists continuum $W \subset U_i$ such that

 $W \cap I_i^- \neq \emptyset \neq W \cap I_i^+.$

The following statements are equivalent:

- 1. Theorem(on the existence of a chain)
- 2. The Poincaré theorem
- 3. The Brouwer Fixed Point theorem.

Theorem (Michalik, P T, Turzański 2015)

Let \mathcal{K}^n be an n-cube-like complex. Then for every map $\phi : |\mathcal{K}^n| \to \{1, ..., n\}$ there exist $i \in \{1, ..., n\}$ and i-th colored chain $\{s_1, ..., s_m\} \subset |\mathcal{K}^n|$ such that

$$s_1 \in \mathcal{F}_i^-$$
 and $s_m \in \mathcal{F}_i^+$

(The sequence $\{s_1, ..., s_m\} \subset |\mathcal{K}^n|$ is a *chain* if for each $i \in \{1, ..., m-1\}$ we have $\{s_i, s_{i+1}\} \in \mathcal{K}^n$.)

Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where: (i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with *n*-dimensional boundary system $\{(A_i^{\sigma}, B_i^{\sigma}) : i = 1, ..., n\}.$ (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma} : X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_i^{\sigma}) = A_i^{\rho}, \ \pi_{\rho}^{\sigma}(B_i^{\sigma}) = B_i^{\rho}.$ Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where: (i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with *n*-dimensional boundary system $\{(A_{i}^{\sigma}, B_{i}^{\sigma}) : i = 1, ..., n\}.$ (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma} : X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_{i}^{\sigma}) = A_{i}^{\rho}, \ \pi_{\rho}^{\sigma}(B_{i}^{\sigma}) = B_{i}^{\rho}.$

Theorem

The space $X = \lim_{\leftarrow} \{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ has n-dimensional Bolzano property.

Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where: (i) $\forall \sigma \in \Sigma X_{\sigma}$ is a compact space with *n*-dimensional boundary system $\{(A_{i}^{\sigma}, B_{i}^{\sigma}) : i = 1, ..., n\}.$ (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma} : X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_{i}^{\sigma}) = A_{i}^{\rho}, \ \pi_{\rho}^{\sigma}(B_{i}^{\sigma}) = B_{i}^{\rho}.$

Theorem

The space $X = \lim_{\leftarrow} \{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ has n-dimensional Bolzano property.

Corollary

Pseudoarc has the Bolzano property.

Let X be a normal space. dimX $\geq n$ iff there exist a family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i : i = 1, ..., n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^n L_i \neq \emptyset.$$

Let X be a normal space. dimX $\geq n$ iff there exist a family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i : i = 1, ..., n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^{"} L_i \neq \emptyset.$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $dim X \ge n$.

Let X be a normal space. dimX $\geq n$ iff there exist a family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i : i = 1, ..., n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^{"} L_i \neq \emptyset.$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $dim X \ge n$.

Theorem

If X is a perfectly normal space X and $\dim X \ge n$. Then X has n-dimensional Bolzano property.

Problem

Is there a gap beetween the Bolzano property and the dimension of X?