On maximal connected topologies

Adam Bartoš drekin@gmail.com

Faculty of Mathematics and Physics Charles University in Prague

Winter School in Abstract Analysis Set Theory & Topology Hejnice, February 2016

Definition

Let X be a set. The set of all topologies on X is a complete lattice denoted by $\mathcal{T}(X)$.

Let \mathcal{P} be a property of topological spaces.

- We say a topology τ ∈ T(X) is maximal P if it is a maximal element of {σ ∈ T(X) : σ satisfies P}, i.e. τ satisfies P but no strictly finer topology satisfies P. In that case ⟨X,τ⟩ is a maximal P space.
- We say a topology τ ∈ T(X) is minimal P if it satisfies P but no strictly coarser topology satisfies P. In that case ⟨X, τ⟩ is a minimal P space.

Examples

- Maximal space means maximal without isolated points.
- A compact Hausdorff space is both *maximal compact* and *minimal Hausdorff*.
- We are interested in *maximal connected spaces*.

For more examples see [Cameron, 1971].

Maximal connected topologies were first considered by Thomas in [Thomas, 1968]. Thomas proved that an open connected subspace of a maximal connected space is maximal connected, and characterized principal maximal connected spaces.

Definition

Recall that a topological space is *submaximal* if every its dense subset is open. Equivalently, if every its subset is an intersection of an open set and a closed set.

A topological space is $T_{\frac{1}{2}}$ if every its singleton is open or closed.

Proposition

We have the following implications.

- submaximal $\implies T_{\frac{1}{2}}$
- maximal connected \implies submaximal
- T_1 maximal \implies submaximal

Lemma

Let $\langle Y, \sigma \rangle$ be a subspace of a connected space $\langle X, \tau \rangle$. For every connected expansion $\sigma^* \geq \sigma$ there exists a connected expansion $\tau^* \geq \tau$ such that $\tau^* \upharpoonright Y = \sigma^*$.

Sketch of the proof. We put $\tau^* := \tau \lor \{ S \cup (X \setminus \overline{Y}) : S \subseteq Y \ \sigma^*\text{-open} \}.$

Corollary [Guthrie-Reynolds-Stone, 1973]

Maximal connectedness is preserved by connected subspaces.

Principal spaces and specialization preorder

Definition

Let X be a topological space.

- X is called *principal* or *finitely generated* if every intersection of open sets is open. Equivalently, if $\overline{A} = \bigcup_{x \in A} \overline{\{x\}}, A \subseteq X$.
- The specialization preorder on X is defined by

$$x \leq y :\iff \overline{\{x\}} \subseteq \overline{\{y\}}.$$

Facts

- Every open set is an upper set. Every closed set is a lower set.
- The converse holds if and only if the space is principal.
- The specialization preorder is an order if and only if the space is T₀.
- Every isolated point is a maximal element, every closed point is a minimal element.

Principal maximal connected topologies

Let X be a principal $T_{\frac{1}{2}}$ space.

- The topology is uniquely determined by the specialization preorder, which is an order with at most two levels.
- Let us consider a graph G_X on X such that there is an edge between x, y ∈ X if and only if x < y or y < x.</p>
- X is connected \iff G_X is connected as a graph.
- X is maximal connected \iff G_X is a tree.

Therefore, principal maximal connected spaces correspond to trees with fixed bipartition.

Examples

The empty space, the one-point space, the Sierpiński space, principal ultrafilter spaces, principal ultraideal spaces.

Maximal connected spaces can be characterized also in the following special classes of topological spaces:

- door spaces,
- hyperconnected spaces,
- ultraconnected spaces,
- extremally disconnected spaces,
- maximal spaces.

These include only free ultrafilter spaces, principal ultrafilter spaces, principal ultraideal spaces, none of which is Hausdorff.

Strongly connected and essentially connected topologies

Definition

- A topological spaces is called
 - strongly connected [Cameron, 1971] if it has a maximal connected expansion;
 - essentially connected [Guthrie–Stone, 1973] if it is connected and every connected expansion has the same connected subsets.

Observation

- Every maximal connected space is both strongly connected and essentially connected.
- Every connected subspace of an essentially connected space is such.
- Every connected subspace of an essentially connected strongly connected space is such.

Hausdorff non-strongly connected topologies

Is there an infinite Hausdorff connected space that has no maximal connected expansion?

Definition

Let X be a topological space. Recall that a point $x \in X$ is

- a *cutpoint* if $X \setminus \{x\}$ is disconnected,
- a *dispersion point* if $X \setminus \{x\}$ is hereditarily disconnected.

Theorem [Guthrie-Stone, 1973]

No Hausdorff connected space with a dispersion point has a maximal connected expansion.

- A dispersion point is the only cutpoint of a connected space.
- Every infinite Hausdorff maximal connected space has infinitely many cutpoints.
 - Every nonempty nondense open subset of a maximal connected space contains a cutpoint in its boundary.

Examples

Hausdorff connected spaces with a dispersion point include

- Roy's countable space,
- Knaster-Kuratowski fan / Cantor's leaky tent.

Observation

Not every connected subspace of a strongly connected space is such since Knaster–Kuratowski fan is a subspace of \mathbb{R}^2 .

Is there an infinite Hausdorff maximal connected space? [Thomas, 1968]

Theorem [Simon, 1978] and [Guthrie–Stone–Wage, 1978]

There exists a maximal connected expansion of the real line.

Corollary

There exists an functionally Hausdorff maximal connected space of size \mathfrak{c} .

Theorem [El'kin, 1979]

For every $\kappa \ge \omega$ there exists a Hausdorff maximal connected space X such that $\Delta(X) = |X| = \kappa$.

Theorem [Hildebrand, 1967]

The real line is essentially connected.

Corollary

The spaces $\mathbb{R},$ [0,1), [0,1] are both strongly connected and essentially connected.

Tree sums of topological spaces

Definition

Let $\langle X_i : i \in I \rangle$ be an indexed family of topological spaces, \sim an equivalence on $\sum_{i \in I} X_i$, and $X := \sum_{i \in I} X_i / \sim$. We consider

- the canonical maps $e_i \colon X_i \to X_i$,
- the canonical quotient map $q: \sum_{i \in I} X_i \to X$,
- the set of gluing points $S_X := \{x \in X : |q^{-1}(x)| > 1\}$,
- the gluing graph G_X with vertices $I \sqcup S_X$ and edges of from $s \to_x i$ where $s \in S_X$, $i \in I$, and $x \in X_i$ such that $e_i(x) = s$.

We say that X is a *tree sum* if G_X is a tree, i.e. for every pair of distinct vertices there is a unique undirected path connecting them.

Example

A wedge sum, that is a space $\sum_{i \in I} X_i / \sim$ such that one point is chosen in each space X_i and \sim is gluing these points together, is an example of a tree sum.

Proposition

A topological space X is naturally homeomorphic to a tree sum of a family of its subspaces $\langle X_i : i \in I \rangle$ if and only if the following conditions hold.

$$1 \bigcup_{i \in I} X_i = X,$$

2 X is inductively generated by embeddings $\{e_i \colon X_i \to X\}_{i \in I}$,

3 *G* is a tree, where *G* is a graph on $S \sqcup I$ satisfying

■
$$S := \{x \in X : |\{i \in I : x \in X_i\}| \ge 2\},$$

• $s \rightarrow i$ is an edge if and only if $s \in S$, $i \in I$, and $s \in X_i$.

Proposition

Let X be a tree sum of spaces $\langle X_i : i \in I \rangle$. X is separated if and only if all the spaces X_i are separated for "separated" meaning T_0 , symmetric, T_1 , T_2 , $T_{2\frac{1}{2}}$, functionally T_2 , totally separated, regular, completely regular, or zero-dimensional.

Proposition

Let X be a tree sum of spaces $\langle X_i : i \in I \rangle$.

- **1** X is connected if and only if all the spaces X_i are connected.
- Let $C \subseteq X$ and suppose that every gluing point of X is closed.
 - 2 *C* is connected if and only if every C_i is connected and G_C is connected (i.e. it is a subtree of G_X), where

•
$$C_i := C \cap X_i$$
 for $i \in I$,

$$I_C := \{i \in I : C_i \neq \emptyset\},\$$

$$S_C := S_X \cap C,$$

• G_C is the subgraph of G_X induced by $I_C \sqcup S_C$.

In this case, C is the induced tree sum of spaces $\langle C_i : i \in i \rangle$.

Tree sums of maximal connected spaces

Proposition

Let
$$\langle X, \tau \rangle := \sum_{i \in I} \langle X_i, \tau_i \rangle / \sim$$
 be a tree sum, $\mathcal{A} \subseteq \mathcal{P}(X)$. We put $\tau^* := \tau \lor \mathcal{A}, \ \tau_i^* := \tau_i \lor \{A \cap X_i : A \in \mathcal{A}\}$ for $i \in I$. If

- the set of gluing points S_X is closed discrete in $\langle X, \tau \rangle$,
- the family \mathcal{A} is point-finite at every point of S_X ,

then $\langle X, \tau^* \rangle = \sum_{i \in I} \langle X_i, \tau_i^* \rangle / \sim$, i.e. such expansion of a tree sum is a tree sum of the corresponding expansions.

Theorem

Let X be a tree sum of spaces $\langle X_i : i \in I \rangle$ such that the set of gluing points is closed discrete.

- **1** If the spaces X_i are maximal connected, then X is such.
- **2** If the spaces X_i are strongly connected, then X is such.
- 3 If the spaces X_i are essentially connected, then X is such.

Examples

As a corollary we have that the spaces like \mathbb{R}^{κ} , $[0, 1]^{\kappa}$, \mathbb{S}^{n} are are strongly connected, and every topological tree graph is both strongly connected and essentially connected.

Observation

If $\langle X, \tau \rangle$ is a topological tree graph, $\langle X, \tau^* \rangle$ its maximal connected expansion, $x \in X$, then the number of components of $X \setminus \{x\}$ is the same with respect to τ as with respect to τ^* .

Example

Every maximal connected principal space is a tree sum of copies of the Sierpiński space. Note that in this case the set gluing points does not have to be discrete or closed.

Example

Consider a comb-like space $\langle X, \tau \rangle := \sum_{x \in [0,1]} [0,1]_x / \sim$ where $[0,1]_x$ are copies of the real interval [0,1] with a maximal connected expansion of the standard topology, and \sim glues together points $\langle 0, x \rangle \sim \langle x, 1 \rangle$ for x > 0.

 $\langle X, \tau \rangle$ is a tree sum of the maximal connected intervals, but it is not maximal connected itself.

Let $A := \langle 0, 0 \rangle \cup \bigcup_{x>0} [0, 1)_x$, $\tau^* := \tau \vee \{A\}$. A is not τ -open, but τ^* is still connected. Since $[0, 1]_0$ becomes disconnected, τ is not even essentially connected.

Observation

A tree sum of maximal connected spaces is maximal connected if and only if it is essentially connected.

Regular maximal connected topologies

Open problems

- Is there an infinite regular maximal connected space?
- Is there an infinite regular submaximal connected space?
- Is there an infinite regular irresolvable connected space?

For more related open problems see [Pavlov, 2007].

Definition

Recall that a topological space is called *resolvable* if there exist two disjoint dense subsets. Otherwise, it is called *irresolvable*.

Fact

We have

submaximal \implies hereditarily irresolvable \implies irresolvable.

Theorem [Alas-Sanchis-Tkačenko-Tkachuk-Wilson, 2000]

The following conditions are equivalent in ZFC.

- **1** There exists an irresolvable Baire space without isolated points.
- 2 There exists a submaximal space that is not σ -discrete.
- 3 There exists a maximal space that is not σ -discrete.

If V = L, then every Baire space without isolated points is resolvable, and hence every submaximal space is σ -discrete. Moreover, if the space is normal, then it is zero-dimensional as a countable union of closed zero-dimensional subsets.

Corollary

(V = L) There is no infinite normal maximal connected space.

References I

- Alas, Sanchis, Tkačenko, Tkachuk, Wilson, Irresolvable and submaximal spaces: homogeneity versus σ-discreteness and new ZFC examples, Topology Appl. 107 (2000), no. 3, 259–273.
- Cameron D. E., Maximal and minimal topologies, Trans. Amer. Math. Soc. 160 (1971), 229–248.
- El'kin A. G., *Maximal connected Hausdorff spaces* (Russian), Mat. Zametki 26 (1979), no. 6, 939–948.
- Guthrie J. A., Reynolds D. F., Stone H. E., *Connected expansions of topologies*, Bull. Austral. Math. Soc. 9 (1973), 259–265.
- Guthrie J. A., Stone H. E., *Spaces whose connected expansions* preserve connected subsets, Fund. Math. 80 (1973), 91–100.
- Guthrie J. A., Stone H. E., Wage M. L., *Maximal connected expansions of the reals*, Proc. Amer. Math. Soc. 69 (1978), 159–165.

- S. K. Hildebrand. *A connected topology for the unit interval*. Fund. Math. 61 (1967), 133–140.
- Pavlov O., Problems on (ir)resolvability, Open Problems in Topology II – edited by E. Pearl, Elsevier B.V. 2007, 51–59.
- Simon P., An example of maximal connected Hausdorff space, Fund. Math. 100 (1978), no. 2, 157–163.
 - Thomas J. P., *Maximal connected topologies*, J. Austral. Math. Soc. 8 (1968), 700–705.

Thank you for your attention.