The principle (*) of Sierpinski and non-meager sets
Osvaldo Guzmán González

The principle (*) of Sierpinski is the assertion that there is a family of functions \(\{ \varphi_n : \omega_1 \rightarrow \omega_1 \mid n \in \omega \} \) such that for every \(I \in [\omega_1]^\omega \) there is \(n \in \omega \) such that \(\varphi_n [I] = \omega_1 \). We prove that this principle holds if there is a non-meager set of size \(\omega_1 \), answering question of Arnie Miller. Combining our result with a theorem of Miller it then follows that (*) is equivalent to \(\non (M) = \omega_1 \). Miller also proved that the principle of Sierpinski is equivalent to the existence of a weak version of a Luzin set, we will construct a model where all of this sets are meager yet \(\non (M) = \omega_1 \).