(Non)measurability of \mathcal{I}-Luzin sets

joint work with Szymon Żeberski

Marcin Michalski

Wrocław University of Technology

Winter School in Abstract Analysis 2016, section Set Theory and Topology
30.01 - 06.02.2016, Hejnice
We live in the Euclidean space \mathbb{R}^n and work with ZFC.

Definition

For each $A, B \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$ we define:

\[
A + B = \{a + b : a \in A, b \in B\},
\]

\[
x + A = \{x\} + A,
\]
We live in the Euclidean space \mathbb{R}^n and work with ZFC.

Definition

For each $A, B \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$ we define:

\[A + B = \{ a + b : a \in A, b \in B \}, \]
\[x + A = \{ x \} + A, \]

Let’s denote a family of Borel sets by \mathcal{B}.

Definition

We say that a σ-ideal \mathcal{I}:

- is translation invariant if for each $x \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $x + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

We shall consider proper, containing all countable sets σ-ideals with a Borel base only.
We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;
- \mathcal{I}-positive Borel set if $A \in \mathcal{B}\setminus \mathcal{I}$;
- \mathcal{I}-nonmeasurable if A doesn't belong to the σ-field $\sigma(\mathcal{B} \cup \mathcal{I})$ generated by Borel sets and the σ-ideal \mathcal{I};
- completely \mathcal{I}-nonmeasurable if $A \cap B$ is \mathcal{I}-nonmeasurable for every \mathcal{I}-positive Borel set B.

Example

Bernstein sets are completely \mathcal{I}-nonmeasurable with respect to any reasonable \mathcal{I}.

Marcin Michalski | (Non)measurability of \mathcal{I}-Luzin sets
Definition

We say that a set A is:

- \mathcal{I}-residual if A is a complement of some set $I \in \mathcal{I}$;
- \mathcal{I}-positive Borel set if $A \in \mathcal{B}\setminus\mathcal{I}$;
- \mathcal{I}-nonmeasurable if A doesn’t belong to the σ-field $\sigma(\mathcal{B} \cup \mathcal{I})$ generated by Borel sets and the σ-ideal \mathcal{I};
- completely \mathcal{I}-nonmeasurable if $A \cap B$ is \mathcal{I}-nonmeasurable for every \mathcal{I}-positive Borel set B.

Example

Bernstein sets are completely \mathcal{I}-nonmeasurable with respect to any reasonable \mathcal{I}.
Definition

We say that a set A is an \mathcal{I}-Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$.

A is called a super \mathcal{I}-Luzin set, if A is an \mathcal{I}-Luzin set and for each \mathcal{I}-positive Borel set B we have $|A \cap B| = |A|$.

Example

For \mathcal{M} and \mathcal{N} σ-ideals of meager and null sets respectively we call a \mathcal{M}-Luzin set a generalized Luzin set and a \mathcal{N}-Luzin set a generalized Sierpiński set.
Definition

We say that a set A is an \mathcal{I}-Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$.

A is called a super \mathcal{I}-Luzin set, if A is an \mathcal{I}-Luzin set and for each \mathcal{I}-positive Borel set B we have $|A \cap B| = |A|$.

Example

For \mathcal{M} and \mathcal{N} σ-ideals of meager and null sets respectively we call a \mathcal{M}-Luzin set a generalized Luzin set and a \mathcal{N}-Luzin set a generalized Sierpiński set.
Definition

\(\mathcal{I} \) has a Weaker Smital Property, if there exists a countable dense set \(D \) such that for each \(\mathcal{I} \)-positive Borel set \(A \) a set \(A + D \) is \(\mathcal{I} \)-residual. We say that the set \(D \) witnesses that \(\mathcal{I} \) has the Weaker Smital Property.

Definition

\(\mathcal{I} \) has a Smital Property if \(A + D \) is \(\mathcal{I} \)-residual for each \(\mathcal{I} \)-positive Borel set \(A \) and each dense set \(D \).

\(\mathcal{I} \) has a Steinhaus Property if for every \(\mathcal{I} \)-positive Borel sets \(A \) and \(B \) a set \(A + B \) has nonempty interior.

Proposition

Steinhaus Property \(\Rightarrow \) Smital Property \(\Rightarrow \) Weaker Smital Property.

Marcin Michalski | (Non)measurability of \(\mathcal{I} \)-Luzin sets
Definition

I has a Weaker Smital Property, if there exists a countable dense set D such that for each I-positive Borel set A a set $A + D$ is I-residual. We say that the set D witnesses that I has the Weaker Smital Property.

Definition

I has a Smital Property if $A + D$ is I-residual for each I-positive Borel set A and each dense set D.

I has a Steinhaus Property if for every I-positive Borel sets A and B a set $A + B$ has nonempty interior.
Definition

I has a Weaker Smital Property, if there exists a countable dense set D such that for each I-positive Borel set A a set $A + D$ is I-residual. We say that the set D witnesses that I has the Weaker Smital Property.

Definition

I has a Smital Property if $A + D$ is I-residual for each I-positive Borel set A and each dense set D.

I has a Steinhaus Property if for every I-positive Borel sets A and B a set $A + B$ has nonempty interior.

Proposition

Steinhaus Property \Rightarrow Smital Property \Rightarrow Weaker Smital Property.
Example

Classic examples of σ-ideals that have all of the stated properties are \mathcal{M} and \mathcal{N}. On the other hand a σ-ideal of meager null sets $\mathcal{M} \cap \mathcal{N}$ doesn’t.
Example

Classic examples of σ-ideals that have all of the stated properties are \mathcal{M} and \mathcal{N}. On the other hand a σ-ideal of meager null sets $\mathcal{M} \cap \mathcal{N}$ doesn’t.

Theorem

Let \mathcal{I} be a translation invariant σ-ideal possessing the Weaker Smital Property. Then every \mathcal{I}-Luzin set is \mathcal{I}–nonmeasurable.
Theorem

I-Luzin sets are I – nonmeasurable ⇔ Every I-positive Borel set B contains a perfect subset from I.

Proof. \Leftarrow: By contradiction. Suppose that we have an I-measurable I-Luzin set X. Then $X = B \Delta I$, $B \in B \setminus I$, $I \in I$; Borel base: take $I \subseteq I' \in B \cap I$, then $B \setminus I' \subseteq X$; $B \setminus I'$ is I-positive, so it contains some perfect set from I against the assumption that X is an I-Luzin set.
Theorem

I-Luzin sets are I– nonmeasurable \iff Every I-positive Borel set B contains a perfect subset from I.

Proof.

\Leftarrow: By contradiction. Suppose that we have an I-measurable I-Luzin set X.

\Rightarrow: [Further proof steps]

Marcin Michalski | (Non)measurability of I-Luzin sets
Theorem

I-Luzin sets are I– nonmeasurable \iff Every I-positive Borel set B contains a perfect subset from I.

Proof.

\Leftarrow: By contradiction. Suppose that we have an I-measurable I-Luzin set X.

- $X = B \triangle l$, $B \in B \setminus I$, $l \in I$;
Theorem

I-Luzin sets are I – nonmeasurable \iff Every I-positive Borel set B contains a perfect subset from I.

Proof.

\Leftarrow: By contradiction. Suppose that we have an I-measurable I-Luzin set X.

- $X = B \Delta I, B \in B \setminus I, I \in I$;

- Borel base: take $I \subseteq I' \in B \cap I$, then $B \setminus I' \subseteq X$;
Theorem

I-Luzin sets are I – nonmeasurable \iff Every I-positive Borel set B contains a perfect subset from I.

Proof.

\Leftarrow: By contradiction. Suppose that we have an I-measurable I-Luzin set X.

- $X = B \Delta I$, $B \in B \setminus I$, $I \in I$;
- Borel base: take $I \subseteq I' \in B \cap I$, then $B \setminus I' \subseteq X$;
- $B \setminus I'$ is I-positive, so it contains some perfect set from I against the assumption that X is an I-Luzin set.
Proof ctnd.

⇒: Also by contradiction. Suppose that we have a Borel \mathcal{I}-positive set B without the mentioned property. We claim that B is itself an \mathcal{I}-Luzin set.
Proof ctnd.

⇒: Also by contradiction. Suppose that we have a Borel \mathcal{I}-positive set B without the mentioned property. We claim that B is itself an \mathcal{I}-Luzin set.

- If it’s not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = c$;
Proof ctnd.

⇒: Also by contradiction. Suppose that we have a Borel \mathcal{I}-positive set B without the mentioned property. We claim that B is itself an \mathcal{I}-Luzin set.

- If it’s not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = c$;
- Borel base: we may assume that I is Borel and thus $B \cap I$ is a Borel set from \mathcal{I};

By the Perfect Set Property $B \cap I$ (and so B alone) contains some perfect set $P \in \mathcal{I}$, against the assumptions; what means that B is a Borel \mathcal{I}-Luzin set.
Proof ctnd.

⇒: Also by contradiction. Suppose that we have a Borel \mathcal{I}-positive set B without the mentioned property. We claim that B is itself an \mathcal{I}-Luzin set.

- If it’s not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = c$;
- Borel base: we may assume that I is Borel and thus $B \cap I$ is a Borel set from \mathcal{I};
- By the Perfect Set Property $B \cap I$ (and so B alone) contains some perfect set $P \in \mathcal{I}$, against the assumptions;
Proof ctnd.

⇒: Also by contradiction. Suppose that we have a Borel \mathcal{I}-positive set B without the mentioned property. We claim that B is itself an \mathcal{I}-Luzin set.

- If it’s not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = c$;
- Borel base: we may assume that I is Borel and thus $B \cap I$ is a Borel set from \mathcal{I};
- By the Perfect Set Property $B \cap I$ (and so B alone) contains some perfect set $P \in \mathcal{I}$, against the assumptions;
- What means that B is a Borel \mathcal{I}-Luzin set.
Lemma

If \mathcal{I}-Luzin set exists then there exists an \mathcal{I}-Luzin of regular cardinality.
Lemma

If \mathcal{I}-Luzin set exists then there exists an \mathcal{I}-Luzin of regular cardinality.

Theorem

Let’s assume that σ-ideal \mathcal{I} has the Weaker Smital Property. Then if A is an \mathcal{I}-Luzin set of regular cardinality then $D + A$ is a super \mathcal{I}-Luzin set (D witnesses the Weaker Smital Property).
Lemma

If \mathcal{I}-Luzin set exists then there exists an \mathcal{I}-Luzin of regular cardinality.

Theorem

Let’s assume that σ-ideal \mathcal{I} has the Weaker Smital Property. Then if A is an \mathcal{I}-Luzin set of regular cardinality then $D + A$ is a super \mathcal{I}-Luzin set (D witnesses the Weaker Smital Property).

Example

\mathcal{N} and \mathcal{M} have the Weaker Smital Property. $\mathcal{N} \cap \mathcal{M}$ doesn’t have the Weaker Smital Property but still \mathcal{I}-Luzin sets are \mathcal{I}-nonmeasurable. For σ-ideal of countable sets $[\mathbb{R}]^{\leq \omega}$ whole space \mathbb{R}^n is an \mathcal{I}-Luzin set.
Question

What conditions should a σ-ideal \mathcal{I} meet to allow transformation of \mathcal{I}-Luzin sets into super \mathcal{I}-Luzin sets?
Theorem

Assume that $\text{add}(\mathcal{I}) = \mathfrak{c}$. Then there exists an \mathcal{I}-Luzin set X such that $X + X$ is a Bernstein set.

Corollary

Under right assumptions there exists a generalized Luzin (Sierpiński) set X such that $X + X$ is a Bernstein set.

What about $L + S$, where L is a Luzin set and S is a Sierpiński set?
Theorem

Assume that $\text{add}(\mathcal{I}) = c$. Then there exists an \mathcal{I}-Luzin set X such that $X + X$ is a Bernstein set.

Corollary

Under right assumptions there exists a generalized Luzin (Sierpiński) set X such that $X + X$ is a Bernstein set.
Theorem

Assume that \(\text{add}(\mathcal{I}) = \mathfrak{c} \). Then there exists an \(\mathcal{I} \)-Luzin set \(X \) such that \(X + X \) is a Bernstein set.

Corollary

Under right assumptions there exists a generalized Luzin (Sierpiński) set \(X \) such that \(X + X \) is a Bernstein set.

What about \(L + S \), where \(L \) is a Luzin set and \(S \) is a Sierpiński set?
Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then $L + S$ is not a Bernstein set since it’s Menger.
Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then $L + S$ is not a Bernstein set since it’s Menger.

Theorem (M.M., Szymon Žeberski)

Assume that \mathfrak{c} is a regular cardinal. Then $L + S$, where L is a generalized Luzin set and S is a generalized Sierpiński set, belongs to Marczewski ideal s_0.

Definition

Recall that a set $A \in s_0$ if $(\forall P$-perfect $)(\exists Q$-perfect $)(Q \subseteq P$ and $Q \cap A = \emptyset)$.
Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then $L + S$ is not a Bernstein set since it’s Menger.

Theorem (M.M., Szymon Žeberski)

Assume that \mathfrak{c} is a regular cardinal. Then $L + S$, where L is a generalized Luzin set and S is a generalized Sierpiński set, belongs to Marczewski ideal s_0.

Definition

Recall that a set $A \in s_0$ if

$$(\forall P\text{-perfect}) \ (\exists Q\text{-perfect}) \ (Q \subseteq P \text{ and } Q \cap A = \emptyset)$$
Lemma

For every compact null set P there exists a comeager set G such that $G + P$ is still null.
Proof of the Theorem.

If $|L + S| < c$ then there is nothing to prove. Otherwise $|L| = |S| = c$ by regularity of c. Let P be an arbitrary chosen perfect set P (wlog- meager, null and compact) and let G be as in the previous Lemma. Let’s denote $N = -G$ and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.
Proof of the Theorem.

If $|L + S| < \mathfrak{c}$ then there is nothing to prove. Otherwise $|L| = |S| = \mathfrak{c}$ by regularity of \mathfrak{c}. Let P be an arbitrary chosen perfect set P (wlog- meager, null and compact) and let G be as in the previous Lemma. Let’s denote $N = -G$ and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L + S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

- $(L \cap N) + (S \cap M) \subseteq M + N$;
- $(L \cap N) + (S \cap M^c)$ is a Luzin set;
- $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;
- $|(L \cap N^c) + (S \cap M^c)| < \mathfrak{c}$.
Proof of the Theorem.

If $|L + S| < c$ then there is nothing to prove. Otherwise $|L| = |S| = c$ by regularity of c. Let P be an arbitrary chosen perfect set P (wlog- meager, null and compact) and let G be as in the previous Lemma. Let’s denote $N = -G$ and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L + S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c))$$

- $(L \cap N) + (S \cap M) \subseteq M + N$;
- $(L \cap N) + (S \cap M^c)$ is a Luzin set;
- $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;
- $|(L \cap N^c) + (S \cap M^c)| < c$.

It follows that all of these sets have intersection with P of power lesser than c, so there exists perfect set $P' \subseteq P$ such that $P' \subseteq (L + S)^c$. Thus $L + S$ belongs to s_0.

Marcin Michalski
(Non)measurability of I-Luzin sets
Remark

The assumption on regularity of \(c \) cannot be omitted.
Thank you for your attention!
Bibliography