Suppose $\kappa$ is a regular cardinal. We write $\text{TP}(\kappa)$ to indicate that there is no Aronszajn tree on $\kappa$, i.e. every $\kappa$-tree has a branch of size $\kappa$ ($\kappa$ has the tree property).

We will present the context, motivation and very few details regarding the proof of the following theorem:

**Theorem** (Friedman, Honzik, Stejskalová, 2015). Suppose $\kappa$ is a supercompact cardinal, and $\lambda > \kappa$ is a weakly compact cardinal. Then there is a forcing notion $\mathbb{R}$ such that in $V^\mathbb{R}$:

- $\kappa$ is a singular strong limit cardinal with cofinality $\omega$, $\kappa^{++} = \lambda$,
- $2^\kappa = \kappa^{+++}$,
- $\text{TP}(\kappa^{++})$.

Note that $\kappa^{+++}$ is used for simplicity, any reasonable $\mu \geq \kappa^{++}$ is possible.

This theorem extends a result by Foreman from 1996 who proved the above with $2^\kappa = \kappa^{++}$.

More details are in a paper available on logika.ff.cuni.cz/radek.