Comparison Game On Trace Ideals

Jialiang He

College of Mathematics
Sichuan University
Chengdu, China

Winter School in Abstract Analysis
section Set Theory & Topology
Hejnice, Feb 5, 2016
Definition

Let X be a countable set and $\mathcal{I} \subseteq \mathcal{P}(X)$, \mathcal{I} is called an **ideal** if:

1. $[X]<\omega \subseteq \mathcal{I}$.
2. $B \in \mathcal{I}, A \subseteq B \implies A \in \mathcal{I}$.
3. $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I}$.

An ideal \mathcal{I} is called **P-ideal** if

4. $\forall \{B_n : n \in \omega\} \subseteq \mathcal{I}, \exists B \in \mathcal{I}(\forall n \in \omega B_n \subseteq^* B)$.

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.
Definition

Let X be a countable set and $\mathcal{I} \subseteq P(X)$, \mathcal{I} is called an **ideal** if:

1. $[X]^{<\omega} \subseteq \mathcal{I}$.
2. $B \in \mathcal{I}$, $A \subseteq B \implies A \in \mathcal{I}$.
3. $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I}$.

An ideal \mathcal{I} is called **P-ideal** if

4. $\forall \{B_n : n \in \omega\} \subseteq \mathcal{I}, \exists B \in \mathcal{I}(\forall n \in \omega B_n \subseteq^* B)$.

And the Borel (Analytic) we means Borel (Analytic) subset of $P(X) \approx 2^X$.
Definition

Let X be a countable set and $\mathcal{I} \subseteq \mathcal{P}(X)$, \mathcal{I} is called an **ideal** if:

1. $[X]^{<\omega} \subseteq \mathcal{I}$.
2. $B \in \mathcal{I}, A \subseteq B \implies A \in \mathcal{I}$.
3. $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I}$.

An ideal \mathcal{I} is called **P-ideal** if

4. $\forall \{B_n : n \in \omega\} \subseteq \mathcal{I}, \exists B \in \mathcal{I}(\forall n \in \omega B_n \subseteq^* B)$.

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.
Definition

Let X be a countable set and $\mathcal{I} \subseteq \mathcal{P}(X)$, \mathcal{I} is called an **ideal** if:

1. $[X]^{<\omega} \subseteq \mathcal{I}$.
2. $B \in \mathcal{I}, A \subseteq B \implies A \in \mathcal{I}$.
3. $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I}$.

An ideal \mathcal{I} is called **\mathcal{P}-ideal** if

4. $\forall \{B_n : n \in \omega\} \subseteq \mathcal{I}, \exists B \in \mathcal{I}(\forall n \in \omega B_n \subseteq^* B)$.

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.

Jialiang He

Comparison Game On Trace Ideals
Definition (M. Hrušák and D. M. Alcántara)

Let \mathcal{I} and \mathcal{J} be ideals on ω. The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

$$
\begin{array}{c c c c c c c c}
\rule{0pt}{2.5ex} & I_0 & \in & \mathcal{I} & \cdots & I_n & \in & \mathcal{I} & \cdots \\
\hline
II & J_0 & \in & \mathcal{J} & \cdots & J_n & \in & \mathcal{J} & \cdots \\
\end{array}
$$

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

We write $\mathcal{I} \subseteq \mathcal{J}$ if Player II has a winning strategy in $G(\mathcal{I}, \mathcal{J})$. And $\mathcal{I} \sim \mathcal{J}$ if $\mathcal{I} \subseteq \mathcal{J} \land \mathcal{J} \subseteq \mathcal{I}$.

Jialiang He
Comparison Game On Trace Ideals
Definition (M. Hrušák and D. M. Alcántara)

Let \mathcal{I} and \mathcal{J} be ideals on ω. The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

\[
\begin{array}{cccccccc}
 & I_0 \in \mathcal{I} & \cdots & I_n \in \mathcal{I} & \cdots \\
\hline
I & & & & \\
\hline
II & J_0 \in \mathcal{J} & \cdots & J_n \in \mathcal{J} & \cdots
\end{array}
\]

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

We write $\mathcal{I} \sqsubseteq \mathcal{J}$ if Player II has a winning strategy in $G(\mathcal{I}, \mathcal{J})$. And $\mathcal{I} \simeq \mathcal{J}$ if $\mathcal{I} \sqsubseteq \mathcal{J} \land \mathcal{J} \sqsubseteq \mathcal{I}$.
Definition (M. Hrušák and D. M. Alcántara)

Let \mathcal{I} and \mathcal{J} be ideals on ω. The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

I $I_0 \in \mathcal{I}$ \hspace{1cm} \cdots \hspace{1cm} I_n \in \mathcal{I} \hspace{1cm} \cdots$

II $J_0 \in \mathcal{J}$ \hspace{1cm} \cdots \hspace{1cm} J_n \in \mathcal{J} \hspace{1cm} \cdots$

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

We write $\mathcal{I} \sqsubseteq \mathcal{J}$ if Player II has a winning strategy in $G(\mathcal{I}, \mathcal{J})$. And $\mathcal{I} \simeq \mathcal{J}$ if $\mathcal{I} \sqsubseteq \mathcal{J} \land \mathcal{J} \sqsubseteq \mathcal{I}$.
Definition (M. Hrušák and D. M. Alcántara)

Let \mathcal{I} and \mathcal{J} be ideals on ω. The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

\[
\begin{array}{cccc}
I & I_0 \in \mathcal{I} & \cdots & I_n \in \mathcal{I} \\
II & J_0 \in \mathcal{J} & \cdots & J_n \in \mathcal{J}
\end{array}
\]

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

We write $\mathcal{I} \subseteq \mathcal{J}$ if Player II has a winning strategy in $G(\mathcal{I}, \mathcal{J})$. And $\mathcal{I} \simeq \mathcal{J}$ if $\mathcal{I} \subseteq \mathcal{J} \land \mathcal{J} \subseteq \mathcal{I}$.
What is the structure of (Borel ideals/\simeq, \sqsubseteq)?
What is the structure of $(\text{Borel ideals}/\sim, \sqsubseteq)$?
Let \mathcal{I} and \mathcal{J} be two ideals on ω.
A function $f: \mathcal{I} \to \mathcal{J}$ is called **Tukey** if

$$\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I} (f(C) \subseteq A \Rightarrow C \subseteq B).$$

We write

$$\mathcal{I} \leq_{MT} \mathcal{J}$$

if there is a monotone Tukey function from \mathcal{I} to \mathcal{J}.

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \implies \mathcal{I} \subseteq \mathcal{J}$.
Let \mathcal{I} and \mathcal{J} be two ideals on ω. A function $f : \mathcal{I} \rightarrow \mathcal{J}$ is called **Tukey** if

$$\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I} (f(C) \subseteq A \Rightarrow C \subseteq B).$$

We write

$$\mathcal{I} \leq_{MT} \mathcal{J}$$

if there is a monotone Tukey function from \mathcal{I} to \mathcal{J}.

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Rightarrow \mathcal{I} \subseteq \mathcal{J}$.
Motivation

Let \mathcal{I} and \mathcal{J} be two ideals on ω.
A function $f : \mathcal{I} \rightarrow \mathcal{J}$ is called **Tukey** if

$$\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I} (f(C) \subseteq A \Rightarrow C \subseteq B).$$

We write

$$\mathcal{I} \leq_{MT} \mathcal{J}$$

if there is a monotone Tukey function from \mathcal{I} to \mathcal{J}.

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Rightarrow \mathcal{I} \subseteq \mathcal{J}$.
Let I and J be two ideals on ω.

A function $f : I \longrightarrow J$ is called **Tukey** if

$$\forall A \in J \exists B \in I \forall C \in I (f(C) \subseteq A \Rightarrow C \subseteq B).$$

We write

$$I \leq_{MT} J$$

if there is a monotone Tukey function from I to J.

Connection: $I \leq_{MT} J \implies I \subseteq J$.
Definition (W. Wadge)

Let $X, Y \subseteq \omega^\omega$. The **Wadge Game** for X and Y denoted by $W(X, Y)$ is played as follow:

<table>
<thead>
<tr>
<th></th>
<th>$x_0 \in \omega$</th>
<th>\cdots</th>
<th>$x_n \in \omega$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$y_0 \in \omega$</td>
<td>\cdots</td>
<td>$y_n \in \omega$</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Denote $x = x_0x_1\ldots x_n\ldots$ and $y = y_0y_1\ldots y_n\ldots$. Player II wins if $x \in X \iff y \in Y$.

We write $X \leq_W Y$ if Player II has a winning strategy in $W(X, Y)$. And $X \equiv_W Y$ if $X \leq_W Y \land Y \leq_W X$.

Jialiang He

Comparison Game On Trace Ideals
Theorem (M. Hrušák, D. M. Alcántara)

\[I \sqsubseteq J \iff \tilde{I} \leq_W \tilde{J}, \text{ where } \tilde{I} = \{ x \in \omega^\omega : \text{rang}(x) \in I \}. \]

Corollary

- The game \(G(I, J) \) is determined for every pair \(I, J \) of Borel ideals.
- The order \(\sqsubseteq \) is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \(\sim \)-classes.
Theorem (M. Hrušák, D. M. Alcántara)

$I \sqsubseteq J \iff \tilde{I} \leq_W \tilde{J}$, where $\tilde{I} = \{ x \in \omega^\omega : \text{rang}(x) \in I \}$.

Corollary

- The game $G(I, J)$ is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq-classes.
Theorem (M. Hrušák, D. M. Alcántara)

\[\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}, \text{ where } \tilde{\mathcal{I}} = \{ x \in \omega^\omega : \text{rang}(x) \in \mathcal{I} \}. \]

Corollary

- The game \(G(\mathcal{I}, \mathcal{J}) \) is determined for every pair \(\mathcal{I}, \mathcal{J} \) of Borel ideals.
- The order \(\sqsubseteq \) is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \(\simeq \)-classes.
Theorem (M.Hrušák, D. M. Alcántara)

\[I \sqsubseteq J \iff \tilde{I} \leq_W \tilde{J}, \text{where } \tilde{I} = \{ x \in \omega^\omega : \text{rang}(x) \in I \}. \]

Corollary

- The game \(G(I, J) \) is determined for every pair \(I, J \) of Borel ideals.
- The order \(\sqsubseteq \) is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \(\sim \)-classes.
Theorem (M. Hrušák, D. M. Alcántara)

$I \sqsubseteq J \iff \tilde{I} \leq_W \tilde{J}$, where $\tilde{I} = \{ x \in \omega^\omega : \text{rang}(x) \in I \}$.

Corollary

- The game $G(I, J)$ is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq-classes.
Theorem (M. Hrušák, D. M. Alcántara)

$I \sqsubseteq J \iff \tilde{I} \leq_W \tilde{J}$, where $\tilde{I} = \{x \in \omega^\omega : \text{rang}(x) \in I\}$.

Corollary

- The game $G(I, J)$ is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \sim-classes.
Theorem (M. Hrušák, D. M. Alcántara)

\[\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_{W} \tilde{\mathcal{J}}, \text{ where } \tilde{\mathcal{I}} = \{ x \in \omega^\omega : \text{rang}(x) \in \mathcal{I} \}. \]

Corollary

- The game \(G(\mathcal{I}, \mathcal{J}) \) is determined for every pair \(\mathcal{I}, \mathcal{J} \) of Borel ideals.
- The order \(\sqsubseteq \) is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \(\simeq \)-classes.
Theorem (M. Hrušák, D. M. Alcántara)

1. For any Borel ideal \mathcal{I}. \mathcal{I} is F_σ if and only if $\mathcal{I} \simeq \text{Fin}$.
2. There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non-$F_\sigma(\Sigma_2^0)$-ideals.
3. Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq \text{Fin}$ or $\mathcal{I} \simeq \emptyset \times \text{Fin}$.
Theorem (M. Hrušák, D. M. Alcántara)

1. For any Borel ideal \mathcal{I}. \mathcal{I} is F_σ if and only if $\mathcal{I} \simeq \text{Fin}$.

2. There are at least two classes of $F_\sigma\delta(\Pi^0_3)$ non-$F_\sigma(\Sigma^0_2)$-ideals.

3. Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq \text{Fin}$ or $\mathcal{I} \simeq \emptyset \times \text{Fin}$.
Theorem (M. Hrušák, D. M. Alcántara)

(1). For any Borel ideal \mathcal{I}. \mathcal{I} is F_σ if and only if $\mathcal{I} \simeq \text{Fin}$.

(2). There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non-$F_\sigma(\Sigma_2^0)$-ideals.

(3). Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq \text{Fin}$ or $\mathcal{I} \simeq \emptyset \times \text{Fin}$.
Theorem (M. Hrušák, D. M. Alcántara)

1. For any Borel ideal \(\mathcal{I} \). \(\mathcal{I} \) is \(F_\sigma \) if and only if \(\mathcal{I} \simeq Fin \).

2. There are at least two classes of \(F_{\sigma \delta}(\Pi^0_3) \) non-\(F_\sigma(\Sigma^0_2) \)-ideals.

3. Let \(\mathcal{I} \) be an analytic \(P \)-ideal. Then \(\mathcal{I} \simeq Fin \) or \(\mathcal{I} \simeq \emptyset \times Fin \).
Question (M. Hrušák, D. M. Alcántara)

1. Is the order \sqsubseteq linear?
2. Are there exactly two classes of $F_{\sigma\delta}$ non F_{σ}-ideals?
3. How many classes of $F_{\sigma\delta\sigma}$-ideals are there?
Question (M. Hrušák, D. M. Alcántara)

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two classes of $F_{\sigma\delta}$ non-F_σ-ideals?

(3). How many classes of $F_{\sigma\delta\sigma}$-ideals are there?
Question (M. Hrušák, D. M. Alcántara)

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two classes of $F_{\sigma\delta}$ non F_{σ}-ideals?

(3). How many classes of $F_{\sigma\delta\sigma}$-ideals are there?
Question (M. Hrušák, D. M. Alcántara)

1. Is the order \subseteq linear?
2. Are there exactly two class of $F_{\sigma \delta}$ non F_{σ}-ideals?
3. How many classes of $F_{\sigma \delta \sigma}$-ideals are there?
Definition

Let X be a Borel subset of 2^{ω}. The **trace ideal** of X, denoted by $T(X)$, is the ideal on $<_{\omega} 2$ generated by $\{\{x | n : n \in \omega\} : x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_\omega(\Sigma^0_2))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^n \in \Gamma$. If X is Γ, then $T(X)$ is Γ.

A subset $A \subseteq 2^{\omega}$ is $D_\omega(\Sigma^0_2)$ if there is a increasing Σ^0_2 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k\in\omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω, then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.
Definition

Let X be a Borel subset of 2^ω. The **trace ideal** of X, denoted by $T(X)$, is the ideal on $<_\omega 2$ generated by $\{\{x|n : n \in \omega\} : x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_\omega(\Sigma^0_2))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^n \in \Gamma$. If X is Γ, then $T(X)$ is Γ.

A subset $A \subseteq 2^\omega$ is $D_\omega(\Sigma^0_2)$ if there is a increasing Σ^0_2 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k \in \omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω, then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.

Comparison Game On Trace Ideals
Definition

Let X be a Borel subset of 2^ω. The **trace ideal** of X, denoted by $T(X)$, is the ideal on $<\omega 2$ generated by $\{\{x|n : n \in \omega\} : x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_\omega(\Sigma^0_2))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^n \in \Gamma$. If X is Γ, then $T(X)$ is Γ.

A subset $A \subseteq 2^\omega$ is $D_\omega(\Sigma^0_2)$ if there is a increasing Σ^0_2 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k \in \omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω, then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.
Observation: Two $F_{\sigma\delta}$ non-F_σ-ideals: $\emptyset \times Fin$, $T(Fin^+)$. We have the following result:

Theorem

(1). $\emptyset \times Fin \not\subseteq T((\emptyset \times Fin)^+)$. Where
$\emptyset \times Fin = \{ A \subseteq \omega \times \omega : \forall n \in \omega | \{ m : (n, m) \in A \} | < \omega \}.$

(2). $T((\emptyset \times Fin)^+) \not\subseteq \emptyset \times Fin$.

Is the order \sqsubseteq linear?
No
Observation: Two $F_{\sigma\delta}$ non-F_{σ}-ideals: $\emptyset \times Fin$, $T(Fin^+)$. We have the following result:

Theorem

1. $\emptyset \times Fin \nsubseteq T((\emptyset \times Fin)^+)$. Where

 $\emptyset \times Fin = \{ A \subseteq \omega \times \omega : \forall n \in \omega | \{ m : (n, m) \in A \} | < \omega \}.$

2. $T((\emptyset \times Fin)^+) \nsubseteq \emptyset \times Fin$.

Is the order \sqsubseteq linear?

No
Observation: Two $F_{σδ}$ non-$F_σ$-ideals: $∅ \times Fin, T(Fin^+)$.
We have the following result:

Theorem

1. $∅ \times Fin \nsubseteq T((∅ \times Fin)^+)$. Where
 $∅ \times Fin = \{ A \subseteq ω \times ω : \forall n \in ω |\{ m : (n, m) \in A\}| < ω\}.$
2. $T((∅ \times Fin)^+) \nsubseteq ∅ \times Fin$.

Is the order \sqsubseteq linear?
No
Theorem

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma^0_2)$.

$X \leq_W Y \implies T(X) \subseteq T(Y)$.

Lemma (J. Steel)

Let Γ be a Wedge class above $D_2(\Sigma^0_2)$. Then

$\forall A, B ((A \in \Gamma \land B \in \Gamma \setminus \tilde{\Gamma}) \implies A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f : 2^\omega \rightarrow 2^\omega$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.

If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.
Theorem

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma^0_2)$.

$X \leq_W Y \implies T(X) \subseteq T(Y)$.

Lemma (J.Steel)

Let Γ be a Wedge class above $D_2(\Sigma^0_2)$. Then

$\forall A, B ((A \in \Gamma \land B \in \Gamma \setminus \tilde{\Gamma}) \implies A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f : 2^\omega \longrightarrow 2^\omega$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.

If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.
Theorem

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma^0_2)$.
$X \leq_W Y \implies T(X) \subseteq T(Y)$.

Lemma (J. Steel)

Let Γ be a Wedge class above $D_2(\Sigma^0_2)$. Then
$\forall A, B ((A \in \Gamma \land B \in \Gamma \setminus \tilde{\Gamma}) \implies A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f : 2^\omega \rightarrow 2^\omega$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.
If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.
Theorem

Let $A \subseteq 2^\omega$ be a Borel subset such that its Wadge class is above $D_\omega(\Sigma^0_2)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_\omega(\Sigma^0_2)$, then $\mathcal{I} \equiv_W \mathcal{J} \iff T(\mathcal{I}) \sim T(\mathcal{J})$.

Are there exactly two class of $F_{\sigma\delta}$ non F_σ-ideals?

How many classes of $F_{\sigma\delta\sigma}$-ideals are there?

No, there are ω_1 many classes.
Theorem

Let $A \subseteq 2^\omega$ be a Borel subset such that its Wadge class is above $D_{\omega}(\Sigma^0_2)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_{\omega}(\Sigma^0_2)$, then $\mathcal{I} \equiv_W \mathcal{J} \iff T(\mathcal{I}) \simeq T(\mathcal{J})$.

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ}-ideals?
How many classes of $F_{\sigma\delta\sigma}$-ideals are there?
No, there are ω_1 many classes.
Theorem

Let $A \subseteq 2^\omega$ be a Borel subset such that its Wadge class is above $D_\omega(\Sigma^0_2)$ and B be any Borel set. If $B^c \not\subseteq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_\omega(\Sigma^0_2)$, then $\mathcal{I} \equiv_W \mathcal{J} \iff T(\mathcal{I}) \simeq T(\mathcal{J})$.

Are there exactly two class of $F_{\sigma\delta}$ non F_σ-ideals? How many classes of $F_{\sigma\delta\sigma}$-ideals are there? No, there are ω_1 many classes.
Theorem

Let $A \subseteq 2^\omega$ be a Borel subset such that its Wadge class is above $D_\omega(\Sigma^0_2)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_\omega(\Sigma^0_2)$, then $\mathcal{I} \equiv_W \mathcal{J} \iff T(\mathcal{I}) \simeq T(\mathcal{J})$.

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ}-ideals? How many classes of $F_{\sigma\delta\sigma}$-ideals are there? No, there are ω_1 many classes.
Theorem

Let \mathcal{I} be a Borel ideal. Then $T(\mathcal{I}) \subseteq \mathcal{I}$.

But we don’t clear whether $T(\mathcal{I}) \sim \mathcal{I}$,

Form above theorem we have that:

Corollary

For any Borel ideal \mathcal{I} with Wadge class above $D_\omega(\Sigma^0_2)$, we have $T(T(\mathcal{I})) \sim T(\mathcal{I})$.

Theorem

Let \mathcal{I} be a Borel ideal. Then $T(\mathcal{I}) \subseteq \mathcal{I}$.

But we don’t clear whether $T(\mathcal{I}) \simeq \mathcal{I}$.

Form above theorem we have that:

Corollary

For any Borel ideal \mathcal{I} with Wadge class above $D_\omega(\Sigma^0_2)$, we have $T(T(\mathcal{I})) \simeq T(\mathcal{I})$.
Definition

For every $0 < \mu < \omega_1$, we let $Fr_{2\mu} = \{S \subseteq \omega^\mu : |S|_L < \omega^\mu\}$,
$Fr_{2\mu+1} = \{S \subseteq \omega^{\mu+1} : \forall m \in \omega((S)_m \in Fr_{2\mu})\}$.

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \subseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \subseteq \mathcal{I}$.
Definition

For every $0 < \mu < \omega_1$, we let $Fr_{2\mu} = \{S \subseteq \omega^\mu : |S|_L < \omega^\mu\}$, $Fr_{2\mu+1} = \{S \subseteq \omega^{\mu+1} : \forall m \in \omega ((S)_m \in Fr_{2\mu})\}$.

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \sqsubseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \sqsubseteq \mathcal{I}$.
Definition

For every $0 < \mu < \omega_1$, we let
\[
Fr_{2\mu} = \{ S \subseteq \omega^{\mu} : |S|_L < \omega^\mu \},
\]
\[
Fr_{2\mu+1} = \{ S \subseteq \omega^{\mu+1} : \forall m \in \omega((S)_m \in Fr_{2\mu}) \}.
\]

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \sqsubseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \sqsubseteq \mathcal{I}$.
A dichotomy for analytic P-ideal

Theorem (M. Hrušák, D. M. Alcántara)

Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq \text{Fin}$ or $\mathcal{I} \simeq \emptyset \times \text{Fin}$.

Theorem

Let \mathcal{I} be an analytic P-ideal. If \mathcal{I} is non-F_σ, then \mathcal{I} is F_{σ_δ}-complete.
A dichotomy for analytic P-ideal

Theorem (M. Hrušák, D. M. Alcántara)

Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq \text{Fin}$ or $\mathcal{I} \simeq \emptyset \times \text{Fin}$.

Theorem

Let \mathcal{I} be an analytic P-ideal. If \mathcal{I} is non-F_σ, then \mathcal{I} is $F_{\sigma\delta}$-complete.
Theorem

\[\emptyset \times \text{Fin} \nsubseteq T((\emptyset \times \text{Fin})^+) \]

The idea of proof.

We construct a winning strategy for Player I in
\[G(\emptyset \times \text{Fin}, T((\emptyset \times \text{Fin})^+)) \].

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every \(1 \leq n < \omega \) we define a game \(G_n \) as follows. In step \(k \), Player I pick a \(I_k \in \emptyset \times \text{Fin} \) and Player II picks a \(J_k \in T((\emptyset \times \text{Fin})^+) \) such that \(\forall i < k \) (\(J_i \subseteq J_k \)) and the maximal cardinal of an antichain of \(J_k \) is \(n \). Player II wins if
\[\bigcup_{n \in \omega} I_n \in \emptyset \times \text{Fin} \text{ iff } \bigcup_{n \in \omega} J_n \in T((\emptyset \times \text{Fin})^+) \].

Claim: Player I have a winning strategy \(\sigma_n \) in \(G_n \). (Proved by induction on \(n \))
Theorem

\(\emptyset \times \text{Fin} \not\preceq T((\emptyset \times \text{Fin})^+) \)

The idea of proof.

We construct a winning strategy for Player I in \(G(\emptyset \times \text{Fin}, T((\emptyset \times \text{Fin})^+)) \).

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every \(1 \leq n < \omega \) we define a game \(G_n \) as follows. In step \(k \), Player I pick a \(I_k \in \emptyset \times \text{Fin} \) and Player II picks a \(J_k \in T((\emptyset \times \text{Fin})^+) \) such that \(\forall i < k (J_i \subseteq J_k) \) and the maximal cardinal of an antichain of \(J_k \) is \(n \). Player II wins if \(\bigcup_{n \in \omega} I_n \in \emptyset \times \text{Fin} \) iff \(\bigcup_{n \in \omega} J_n \in T((\emptyset \times \text{Fin})^+) \).

Claim: Player I have a winning strategy \(\sigma_n \) in \(G_n \). (Proved by induction on \(n \))
Theorem

$\emptyset \times \text{Fin} \nsubseteq T((\emptyset \times \text{Fin})^+)$

The idea of proof.

We construct a winning strategy for Player I in $G(\emptyset \times \text{Fin}, T((\emptyset \times \text{Fin})^+))$.

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every $1 \leq n < \omega$ we define a game G_n as follows. In step k, Player I pick a $I_k \in \emptyset \times \text{Fin}$ and Player II picks a $J_k \in T((\emptyset \times \text{Fin})^+)$ such that $\forall i < k (J_i \subseteq J_k)$ and the maximal cardinal of an antichain of J_k is n. Player II wins if $\bigcup_{n \in \omega} I_n \in \emptyset \times \text{Fin}$ iff $\bigcup_{n \in \omega} J_n \in T((\emptyset \times \text{Fin})^+)$.

Claim: Player I have a winning strategy σ_n in G_n. (Proved by induction on n)
Theorem

\(\emptyset \times \text{Fin} \not\subseteq T((\emptyset \times \text{Fin})^+) \)

The idea of proof.

We construct a winning strategy for Player I in
\(G(\emptyset \times \text{Fin}, T((\emptyset \times \text{Fin})^+)) \).

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every \(1 \leq n < \omega \) we define a game \(G_n \) as follows. In step \(k \), Player I pick a \(I_k \in \emptyset \times \text{Fin} \) and Player II picks a \(J_k \in T((\emptyset \times \text{Fin})^+) \) such that \(\forall i < k \) \((J_i \subseteq J_k) \) and the maximal cardinal of an antichain of \(J_k \) is \(n \). Player II wins if
\(\bigcup_{n \in \omega} I_n \in \emptyset \times \text{Fin} \) iff \(\bigcup_{n \in \omega} J_n \in T((\emptyset \times \text{Fin})^+) \).

Claim: Player I have a winning strategy \(\sigma_n \) in \(G_n \). (Proved by induction on \(n \))
Continue the proof.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin\omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:
Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω. In step 0, Play I plays \emptyset, and in step $k > 0$, Let $M(k)$ be the maximal cardinal of an antichain in $\bigcup_{i<k} J_i$.

(1) If $M(k) = M(k-1)$, then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i<k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If $M(k) > M(k-1)$, then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i<k} J_i$.
Continue the proof.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin\omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω. In step 0, Play I plays \emptyset, and in step $k > 0$, Let $M(k)$ be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If $M(k) = M(k-1)$, then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If $M(k) > M(k-1)$, then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.
Continue the proof.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:
Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω. In step 0, Play I plays \emptyset, and in step $k > 0$, Let $M(k)$ be the maximal cardinal of an antichain in $\bigcup_{i<k} J_i$.

1. If $M(k) = M(k-1)$, then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i<k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.
2. If $M(k) > M(k-1)$, then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i<k} J_i$.
Continue the proof.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times \text{Fin } \omega$ many times by the structure of $\emptyset \times \text{Fin}$.

The strategy of Player I as follows:
Let $\{X_n : n \in \omega\} \subseteq [\omega]^\omega$ be a partition of ω. In step 0, Play I plays \emptyset, and in step $k > 0$, Let $M(k)$ be the maximal cardinal of an antichain in $\bigcup_{i<k} J_i$.

(1) If $M(k) = M(k-1)$, then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i<k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If $M(k) > M(k-1)$, then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i<k} J_i$.
Continue the proof.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^\omega$ be a partition of ω. In step 0, Play I plays \emptyset, and in step $k > 0$, Let $M(k)$ be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If $M(k) = M(k - 1)$, then Player I plays the game $G_{M(k - 1)}$ in $X_{M(k - 1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k - 1)}$.

(2) If $M(k) > M(k - 1)$, then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.
Děkuji!