VLADIMIR KANOVEI, Some applications of finite-support products of Jensen’s minimal Δ^1_3 forcing.

IIITP, Moscow, Russia, and MIIT, Moscow, Russia.

E-mail: kanovei@rambler.ru.

Jensen [4] introduced a forcing notion $P \in L$ such that any P-generic real a over L has minimal L-degree, is Δ^1_3 in $L[a]$, and is the only P-generic real in $L[a]$. Further applications of this forcing include iterations, finite products and finite-support infinite products for symmetric choiceless models [1], et cetera. We present some new applications of finite-support infinite products of Jensen’s forcing and its variations.

Theorem 1 ([5]). There is a generic extension $L[x]$ of L by a real x in which $[x]_{E_0}$ is a (lightface) Π^1_3 set containing no OD (ordinal-definable) reals. Therefore it is consistent with ZFC that there is a countable non-empty lightface Π^1_3 set of reals, in fact a E_0 equivalence class, containing no OD elements.

Recall that E_0 is an equivalence relation on ω^ω such that $x \in E_0 y$ iff $x(k) = y(k)$ for all but finite k, and $[x]_{E_0} = \{ y \in \omega^\omega : x \in E_0 y \}$ is the (countable) E_0-class of a real $x \in \omega^\omega$.

Let a Groszek – Laver pair be any OD pair of sets $X,Y \subseteq \omega^\omega$ such that neither of X,Y is separately OD. As demonstrated in [3], if (x,y) is a Sacks\times Sacks generic pair of reals over L then their L-degrees $X = [x]_L \cap \omega^\omega$ and $Y = [y]_L \cap \omega^\omega$ form such a pair in $L[x,y]$; the sets X,Y is this example are obviously uncountable.

Theorem 2 ([2]). There is a generic extension $L[a,b]$ of L by reals a,b in which it is true that the countable sets $[a]_{E_0}$ and $[b]_{E_0}$ form a Groszek – Laver pair, and moreover the union $[a]_{E_0} \cup [b]_{E_0}$ is a Π^1_3 set.

Theorem 3 ([6]). It is consistent with ZFC that there is a Π^1_3 set $\emptyset \neq Q \subseteq \omega^\omega \times \omega^\omega$ with countable cross-sections $Q_x = \{ y : (x,y) \in Q \}, x \in \omega^\omega$, non-uniformizable by any ROD set. In fact each cross-section Q_x in the example is an E_0 class.

ROD = real-ordinal-definable. Typical examples of non-ROD-uniformizable sets, like $\{ (x,y) : y \notin L[x] \}$ in the Solovay model, definitely have uncountable cross-sections.

Let analytically definable mean the union $\bigcup_n \Sigma^1_n$ of all lightface definability classes Σ^1_n. The full basis theorem is the claim that any non-empty analytically definable set $X \subseteq \omega^\omega$ contains an analytically definable element. This is true assuming $V = L$, and generally assuming that there is an analytically definable wellordering of the reals. We prove that the implication is irreversible.

Theorem 4 (with A. Enayat). It is consistent with ZFC that the full basis theorem is true but there is no analytically definable wellordering of the reals.

