Expected values for the a.d. number and 3D-iterations

Diego A. Mejía

Technische Universität Wien

Winter School in Abstract Analysis
Hejnice, Czech Republic
February 5th, 2016
This is a part of a joint work with V. Fischer, S. Friedman and D. Montoya-Amaya
Some basic notions

- For $f, g \in \omega^\omega$, $f \leq^* g$ (\textit{g dominates f}) means that $f(n) \leq g(n)$ for all but finitely many $n < \omega$.

- The \textit{bounding number} \mathfrak{b} is the least size of a \leq^*-unbounded subset of ω^ω.

- The \textit{dominating number} \mathfrak{d} is the least size of a \leq^*-cofinal family in ω^ω.
Some basic notions

- For \(f, g \in \omega^\omega \), \(f \leq^* g \) (\(g \) dominates \(f \)) means that \(f(n) \leq g(n) \) for all but finitely many \(n < \omega \).

- The **bounding number** \(b \) is the least size of a \(\leq^* \)-unbounded subset of \(\omega^\omega \).

- The **dominating number** \(d \) is the least size of a \(\leq^* \)-cofinal family in \(\omega^\omega \).

- \(A \subseteq [\omega]^{\aleph_0} \) is an **a.d. (almost disjoint) family** if \(a \cap b \) is finite for any distinct \(a, b \in A \).
Some basic notions

- For $f, g \in \omega^\omega$, $f \leq^* g$ (g dominates f) means that $f(n) \leq g(n)$ for all but finitely many $n < \omega$.

- The bounding number b is the least size of a \leq^*-unbounded subset of ω^ω.

- The dominating number \mathfrak{d} is the least size of a \leq^*-cofinal family in ω^ω.

- $A \subseteq [\omega]^{\aleph_0}$ is an a.d. (almost disjoint) family if $a \cap b$ is finite for any distinct $a, b \in A$.

- The a.d. number \mathfrak{a} is the least size of an infinite mad (maximal a.d.) family.
Some basic notions

- For $f, g \in \omega^\omega$, $f \leq^* g$ (\emph{g dominates f}) means that $f(n) \leq g(n)$ for all but finitely many $n < \omega$.

- The \emph{bounding number} b is the least size of a \leq^*-unbounded subset of ω^ω.

- The \emph{dominating number} \d is the least size of a \leq^*-cofinal family in ω^ω.

- $A \subseteq [\omega]^{\aleph_0}$ is an \emph{a.d. (almost disjoint) family} if $a \cap b$ is finite for any distinct $a, b \in A$.

- The \emph{a.d. number} α is the least size of an \emph{infinite mad (maximal a.d.) family}.

\textbf{Fact}

$b \leq \d$ and $b \leq \alpha$.
Under CH, there is an infinite mad family which is preserved mad in any C_κ-extension. The above also works for any random algebra B_κ.

$(Brendle and Judah and Shelah 1993)$ D adds a mad family of size \aleph_1.

$(Brendle 1995)$ LOC and E adds a mad family of size \aleph_1.

Theorem $(Steprans 1993)$ C_{ω_1} adds a mad family of size \aleph_1 which is preserved mad in further Cohen extensions.

Typically, it requires a lot of work to increase a (beyond b).
Effect of some classical ccc posets on α

- **(Kunen 1980)** Under CH, there is an infinite mad family which is preserved mad in any C_κ-extension.
\textbf{(Kunen 1980)} Under CH, there is an infinite mad family which is preserved mad in any \mathcal{C}_κ-extension.

The above also works for any random algebra \mathbb{B}_κ.

Typically, it requires a lot of work to increase α (beyond β).
Effect of some classical ccc posets on α

- **(Kunen 1980)** Under CH, there is an infinite mad family which is preserved mad in any \mathcal{C}_κ-extension.
- The above also works for any random algebra \mathcal{B}_κ.
- **(Brendle and Judah and Shelah 1993)** \mathcal{D} adds a mad family of size \aleph_1.
- **(Brendle 1995)** \mathcal{LOC} and \mathcal{E} adds a mad family of size \aleph_1.

Theorem (Steprans 1993) \mathcal{C}_{ω_1} adds a mad family of size \aleph_1 which is preserved mad in further Cohen extensions.

Typically, it requires a lot of work to increase α (beyond β).
Effect of some classical ccc posets on α

- **(Kunen 1980)** Under CH, there is an infinite mad family which is preserved mad in any C_κ-extension.
- The above also works for any random algebra B_κ.
- **(Brendle and Judah and Shelah 1993)** D adds a mad family of size \aleph_1.
- **(Brendle 1995)** LOC and E adds a mad family of size \aleph_1.

Theorem (Steprans 1993)

C_{ω_1} adds a mad family of size \aleph_1 which is preserved mad in further Cohen extensions.
Effect of some classical ccc posets on α

- **(Kunen 1980)** Under CH, there is an infinite mad family which is preserved mad in any \mathcal{C}_κ-extension.
- The above also works for any random algebra \mathbb{B}_κ.
- **(Brendle and Judah and Shelah 1993)** \mathbb{D} adds a mad family of size \aleph_1.
- **(Brendle 1995)** LOC and \mathbb{E} adds a mad family of size \aleph_1.

Theorem (Steprans 1993)

\mathcal{C}_{ω_1} adds a mad family of size \aleph_1 which is preserved mad in further Cohen extensions.

Typically, it requires a lot of work to increase α (beyond \mathfrak{b}).
Main problem

Find the value of α in generic extensions of some ccc FS-iteration,
Main problem

Find the value of α in generic extensions of some ccc FS-iteration, e.g.

$(\kappa \leq \mu \leq \nu$ uncountable regular, $\nu \leq \lambda$, $\lambda^{<\kappa} = \lambda)$
Main problem

Find the value of a in generic extensions of some ccc FS-iteration, e.g. $(\kappa \leq \mu \leq \nu \text{ uncountable regular, } \nu \leq \lambda, \lambda_{<\kappa} = \lambda)$(i) a FS-it. forcing $b = \delta = \mu \leq c = \lambda$.

Conjecture
Many of these iterations force $a = b$... at least by technical changes in their construction.
Main problem

Find the value of a in generic extensions of some ccc FS-iteration, e.g.

$(\kappa \leq \mu \leq \nu$ uncountable regular, $\nu \leq \lambda$, $\lambda^{<\kappa} = \lambda)$

(i) a FS-it. forcing $b = d = \mu \leq c = \lambda$.

(ii) a FS-it. forcing $b = \kappa \leq \text{cov}(M) = \mu \leq d = \lambda$.
Main problem

Find the value of a in generic extensions of some ccc FS-iteration, e.g.
$(\kappa \leq \mu \leq \nu$ uncountable regular, $\nu \leq \lambda$, $\lambda^{<\kappa} = \lambda$)

(i) a FS-it. forcing $b = d = \mu \leq c = \lambda$.

(ii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq d = \lambda$.

(iii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq d = \nu \leq c = \lambda$.
Main problem

Find the value of a in generic extensions of some ccc FS-iteration, e.g.
($\kappa \leq \mu \leq \nu$ uncountable regular, $\nu \leq \lambda$, $\lambda^{+} = \lambda$)

(i) a FS-it. forcing $b = \delta = \mu \leq c = \lambda$.
(ii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq \delta = \lambda$.
(iii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq \delta = \nu \leq c = \lambda$.

With $\mu = \aleph_1$, a FS-it. of length ω_1 over a model with $c = \lambda$ works for (i) and forces $a = \aleph_1$.
Main problem

Find the value of a in generic extensions of some ccc FS-iteration, e.g. $(\kappa \leq \mu \leq \nu$ uncountable regular, $\nu \leq \lambda$, $\lambda^{<\kappa} = \lambda)$

(i) a FS-it. forcing $b = d = \mu \leq c = \lambda$.

(ii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq d = \lambda$.

(iii) a FS-it. forcing $b = \kappa \leq \text{cov}(\mathcal{M}) = \mu \leq d = \nu \leq c = \lambda$.

With $\mu = \aleph_1$, a FS-it. of length ω_1 over a model with $c = \lambda$ works for (i) and forces $a = \aleph_1$.

Conjecture

Many of these iterations force $a = b$... at least by technical changes in their construction.
The natural strategy would be
The natural strategy would be

(1) Add a mad family of certain size (expected to be \mathfrak{b} at the end).
The natural strategy would be

(1) Add a mad family of certain size (expected to be \(b \) at the end).

(2) Construct the desired iteration afterwards while preserving the mad family.
The natural strategy would be

1. Add a mad family of certain size (expected to be \mathfrak{b} at the end).
2. Construct the desired iteration afterwards while preserving the mad family.

Theorem (Brendle and Fischer 2011)

If $\kappa \leq \mu$ are uncountable regular and $\mu^{\aleph_0} = \mu$ then there is a ccc poset forcing $\mathfrak{b} = \mathfrak{a} = \kappa \leq \mathfrak{s} = \mathfrak{c} = \mu$.
Adding a mad family

Definition (Hechler 1972)

For a set X define the poset \mathbb{H}_X:

- **Conditions:**

 $F_p : \mathcal{P}_p \times n_p \to 2$ where $F_p \in [X]^{<\aleph_0}$ and $n_p < \omega$.

- **Order:**

 $q \leq p$ iff $p \subseteq q$ and, for any $i \in n_q \setminus n_p$, there is at most one $x \in F_p$ such that $p(x, i) = 1$.
Adding a mad family

Definition (Hechler 1972)

For a set X define the poset \mathbb{H}_X:

- **Conditions:** $p : F_p \times n_p \to 2$ where $F_p \in [X]^{<\aleph_0}$ and $n_p < \omega$.
Adding a mad family

Definition (Hechler 1972)

For a set X define the poset \mathbb{H}_X:

- **Conditions:** $p : F_p \times n_p \to 2$ where $F_p \in [X]^{<\aleph_0}$ and $n_p < \omega$.

- **Order:** $q \leq p$ iff $p \subseteq q$ and, for any $i \in n_q \setminus n_p$, there is at most one $x \in F_p$ such that $p(x, i) = 1$.

Diagagram:

- ω
- n_q
- n_p
- F_p
- F_q
- X
Adding a mad family

The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where

$$i \in A_x \text{ iff } p(x, i) = 1 \text{ for some } p \in G.$$
The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where
\[
i \in A_x \text{ iff } p(x, i) = 1 \text{ for some } p \in G.
\]
$\mathcal{A}|X$ is a.d.. Additionally, when X is uncountable, it is mad.

\mathcal{H}_X is ccc, moreover, it has precaliber ω_1. $X \subseteq Y$ implies $\mathcal{H}_X \preceq \mathcal{H}_Y$. If C is a \subseteq-chain of sets and $Y = \bigcup C$ then $\mathcal{H}_Y = \limdir X \in C \mathcal{H}_X$.

Therefore, if δ is a limit ordinal, \mathcal{H}_δ comes from the FS-iteration $\langle \mathcal{H}_\alpha, \dot{Q}_\alpha \rangle$ $\alpha < \delta$ where \dot{Q}_α is σ-centered.

$\mathcal{H}_X \simeq C$ when X is countable. $\mathcal{H}_X \simeq C_{\omega_1}$ when $|X| = \aleph_1$.

Diego A. Mejía (TU Wien)
Adding a mad family

The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where

$$i \in A_x \text{ iff } p(x, i) = 1 \text{ for some } p \in G.$$

$\mathcal{A}|X$ is a.d.. Additionally, when X is uncountable, it is mad.

- \mathbb{H}_X is ccc, moreover, it has precaliber ω_1.
Adding a mad family

The poset adds generically a family \(\mathcal{A}|X := \langle A_x : x \in X \rangle \) of subsets of \(\omega \) where

\[
i \in A_x \iff p(x, i) = 1 \text{ for some } p \in G.
\]

\(\mathcal{A}|X \) is a.d.. Additionally, when \(X \) is uncountable, it is mad.

- \(\mathbb{H}_X \) is ccc, moreover, it has precaliber \(\omega_1 \).
- \(X \subseteq Y \) implies \(\mathbb{H}_X \prec \mathbb{H}_Y \).
Adding a mad family

The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where

$$i \in A_x \iff p(x, i) = 1 \text{ for some } p \in G.$$

$\mathcal{A}|X$ is a.d.. Additionally, when X is uncountable, it is mad.

- \mathcal{H}_X is ccc, moreover, it has precaliber ω_1.
- $X \subseteq Y$ implies $\mathcal{H}_X \ll \mathcal{H}_Y$.
- If C is a \subseteq-chain of sets and $Y = \bigcup C$ then $\mathcal{H}_Y = \limdir_{X \in C} \mathcal{H}_X$.

Therefore, if δ is a limit ordinal, \mathcal{H}_δ comes from the FS-iteration $\langle \mathcal{H}_\alpha, \dot{Q}_\alpha \rangle_{\alpha < \delta}$ where \dot{Q}_α is σ-centered.
Adding a mad family

The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where

$$i \in A_x \text{ iff } p(x, i) = 1 \text{ for some } p \in G.$$

$\mathcal{A}|X$ is a.d.. Additionally, when X is uncountable, it is mad.

- \mathbb{H}_X is ccc, moreover, it has precaliber ω_1.
- $X \subseteq Y$ implies $\mathbb{H}_X \prec \mathbb{H}_Y$.
- If \mathcal{C} is a \subseteq-chain of sets and $Y = \bigcup \mathcal{C}$ then $\mathbb{H}_Y = \limdir_{X \in \mathcal{C}} \mathbb{H}_X$. Therefore, if δ is a limit ordinal, \mathbb{H}_δ comes from the FS-iteration $\langle \mathbb{H}_\alpha, \dot{Q}_\alpha \rangle_{\alpha < \delta}$ where \dot{Q}_α is σ-centered.
- $\mathbb{H}_X \simeq \mathcal{C}$ when X is countable.
Adding a mad family

The poset adds generically a family $\mathcal{A}|X := \langle A_x : x \in X \rangle$ of subsets of ω where

$$i \in A_x \text{ iff } p(x, i) = 1 \text{ for some } p \in G.$$

$\mathcal{A}|X$ is a.d.. Additionally, when X is uncountable, it is mad.

- \mathbb{H}_X is ccc, moreover, it has precaliber ω_1.
- $X \subseteq Y$ implies $\mathbb{H}_X < \mathbb{H}_Y$.
- If \mathcal{C} is a \subseteq-chain of sets and $Y = \bigcup \mathcal{C}$ then $\mathbb{H}_Y = \limdir_{X \in \mathcal{C}} \mathbb{H}_X$. Therefore, if δ is a limit ordinal, \mathbb{H}_δ comes from the FS-iteration $\langle \mathbb{H}_\alpha, \dot{Q}_\alpha \rangle_{\alpha < \delta}$ where \dot{Q}_α is σ-centered.
- $\mathbb{H}_X \simeq \mathcal{C}$ when X is countable.
- $\mathbb{H}_X \simeq \mathcal{C}_{\omega_1}$ when $|X| = \aleph_1$.

Definition (Brendle and Fischer 2011)

Let M be a transitive model of ZFC, $\mathcal{A} = \{A_z : z \in \Omega\} \in M$ a family of infinite subsets of ω and $B^* \in [\omega]^{\aleph_0}$.

Lemma (Brendle and Fischer 2011)

In V, let Ω be a set and $z^* \in \Omega$. Then, in $V[H_{\Omega}]$, A_{z^*} diagonalizes $V[H_{\Omega}] \setminus \{z^*\}$ outside $A|_{\Omega \setminus \{z^*\}}$.
Preservation properties

Definition (Brendle and Fischer 2011)

Let M be a transitive model of ZFC, $\mathcal{A} = \{A_z : z \in \Omega\} \in M$ a family of infinite subsets of ω and $B^* \in [\omega]^{\aleph_0}$. B^* diagonalizes M outside \mathcal{A} if, for any $h : \omega \times [\Omega]^{<\aleph_0} \to \omega$, $h \in M$, and any $m < \omega$ there are $i \geq m$ and $F \in [\Omega]^{<\aleph_0}$ such that $[i, h(i, F)) \setminus \bigcup_{z \in F} A_z \subseteq B^*$.

Lemma (Brendle and Fischer 2011)

Let \mathcal{A}, M and B^* as above. If B^* diagonalizes M outside \mathcal{A} then

$|X \cap B^*| = \aleph_0$ for any $X \in M \cap [\omega]^{\aleph_0} \setminus \mathcal{I}(\mathcal{A})$.
Preservation properties

Definition (Brendle and Fischer 2011)

Let M be a transitive model of ZFC, $\mathcal{A} = \{A_z : z \in \Omega\} \in M$ a family of infinite subsets of ω and $B^* \in [\omega]^{\aleph_0}$. B^* **diagonalizes M outside \mathcal{A}** if, for any $h : \omega \times [\Omega]^{<\aleph_0} \to \omega$, $h \in M$, and any $m < \omega$ there are $i \geq m$ and $F \in [\Omega]^{<\aleph_0}$ such that $[i, h(i, F)) \setminus \bigcup_{z \in F} A_z \subseteq B^*$.

Lemma (Brendle and Fischer 2011)

Let \mathcal{A}, M and B^* as above. If B^* diagonalizes M outside \mathcal{A} then $|X \cap B^*| = \aleph_0$ for any $X \in M \cap [\omega]^{\aleph_0} \setminus \mathcal{I}(\mathcal{A})$.

Lemma (Brendle and Fischer 2011)

In V, let Ω be a set and $z^* \in \Omega$. Then, in V^{H_Ω}, A_{z^*} diagonalizes $V^{H_\Omega \setminus \{z^*\}}$ outside $\mathcal{A}|(\Omega \setminus \{z^*\})$.
An application

Theorem (essentially Brendle 1991)

Let $\kappa \leq \mu$ be uncountable regular cardinals, $\mu \leq \lambda$ such that $\lambda^{<\kappa} = \lambda$. Then, there is a ccc poset forcing $\kappa \mu \lambda \aleph_1$ add(\mathcal{N}) add(\mathcal{M}) cov(\mathcal{M}) non(\mathcal{N}) and $\alpha = b = \kappa$.
An application

Theorem

Let $\kappa \leq \mu$ be uncountable regular cardinals, $\mu \leq \lambda$ such that $\lambda^{<\kappa} = \lambda$. Then, there is a ccc poset forcing

\[
\begin{array}{c}
\text{cov}(\mathcal{N}) & \text{non}(\mathcal{M}) & \text{cof}(\mathcal{M}) & \text{cof}(\mathcal{N}) \\
\text{add}(\mathcal{N}) & \text{add}(\mathcal{M}) & \text{cov}(\mathcal{M}) & \text{non}(\mathcal{N})
\end{array}
\]

and $\alpha = b = \kappa$.
\[\mathcal{A} := \mathcal{A}|_\kappa = \{ A_\beta : \beta < \kappa \} \text{ is a mad family in } V_{0,\kappa}. \]
\[V^H_{\kappa} = V_{0,\kappa} \]
\[V^H_{\beta+1} = V_{0,\beta+1} \]
\[V^H_{\beta} = V_{0,\beta} \]
\[V^H_1 = V_{0,1} \]
\[V = V_{0,0} \]

\[A := A|_\kappa = \{ A_\beta : \beta < \kappa \} \] is a mad family in \(V_{0,\kappa} \).

\(A_\beta \) diagonalizes \(V_{0,\beta} \) outside \(A|_\beta \) (for all \(\beta < \kappa \)).
\[A := A\mid_\kappa = \{ A_\beta : \beta < \kappa \} \text{ is a mad family in } V_{0,\kappa}. \]

\[A_\beta \text{ diagonalizes } V_{0,\beta} \text{ outside } A\mid_\beta \text{ (for all } \beta < \kappa). \]
$A := A|\kappa = \{ A_\beta : \beta < \kappa \}$ is a mad family in $V_{0,\kappa}$.

A_β diagonalizes $V_{0,\beta}$ outside $A|\beta$ (for all $\beta < \kappa$).

$N_\alpha \in V_{\alpha+1,t(\alpha+1)}$ is a transitive model of ZFC of size $< \kappa$.
\[\mathcal{A} := \mathcal{A}|\kappa = \{ A_\beta : \beta < \kappa \} \text{ is a mad family in } V_{0,\kappa}. \]

\[A_\beta \text{ diagonalizes } V_{0,\beta} \text{ outside } \mathcal{A}|\beta \text{ (for all } \beta < \kappa). \]

\[N_\alpha \in V_{\alpha+1, t(\alpha+1)} \text{ is a transitive model of ZFC of size } < \kappa. \]

Parallel FS-iterations of length \(\lambda\mu \).
Fix $M \subseteq N$ transitive models of ZFC, $A \in M$ and $B^* \in N$ diagonalizing M outside A.

$$B^* \in N \bullet$$

$$A \in M \bullet$$
Fix $M \subseteq N$ transitive models of ZFC, $A \in M$ and $B^* \in N$ diagonalizing M outside A.

Lemma (Brendle and Fischer 2011)

Let $P \in M$ be a poset. Then, in N^P, B^* diagonalizes M^P outside A.
Fix $M \subseteq N$ transitive models of ZFC, $A \in M$ and $B^* \in N$ diagonalizing M outside A.

\[B^* \in N \xrightarrow{\mathcal{E}^N} N^{\mathcal{E}^N} \]
\[A \in M \xrightarrow{\mathcal{E}^M} M^{\mathcal{E}^M} \]

Lemma (Brendle and Fischer 2011)

Let $P \in M$ be a poset. Then, in N^P, B^* diagonalizes M^P outside A.

Main Lemma

In $N^{\mathcal{E}^N}$, B^* diagonalizes $M^{\mathcal{E}^M}$ outside A.
Fix $M \subseteq N$ transitive models of ZFC, $A \in M$ and $B^* \in N$ diagonalizing M outside A.

\[\begin{align*}
B^* &\in N \xrightarrow{E^N} N^{E^N} \\
A &\in M \xrightarrow{E^M} M^{E^M}
\end{align*}\]

Lemma (Brendle and Fischer 2011)

Let $P \in M$ be a poset. Then, in N^P, B^* diagonalizes M^P outside A.

Main Lemma

In N^{E^N}, B^* diagonalizes M^{E^M} outside A.

The same holds for random forcing and Cohen forcing.
A general result

Theorem

Let κ be an uncountable regular cardinal. After forcing with \mathbb{H}_κ, any further FS-iteration where each iterand is either

(i) in \{C, random, E\} or

(ii) a ccc poset of size $<\kappa$

preserves the mad family added by \mathbb{H}_κ.
A general result

Theorem

Let κ be an uncountable regular cardinal. After forcing with H_κ, any further FS-iteration where each iterand is either

(i) in \{\mathcal{C}, random, \mathcal{E}\} or

preserves the mad family added by H_κ.
A general result

Theorem

Let κ be an uncountable regular cardinal. After forcing with \mathbb{H}_κ, any further FS-iteration where each iterand is either

(i) in $\{C, \text{random}, E\}$ or
(ii) a ccc poset of size $< \kappa$,

preserves the mad family added by \mathbb{H}_κ.
More examples

Corollary

Let $\theta_0 \leq \theta_1 \leq \kappa \leq \mu$ be uncountable regular cardinals, $\mu \leq \lambda$ such that $\lambda^{<\kappa} = \lambda$. Then, there is a ccc poset forcing

$$\text{add}(N) \quad \text{non}(M) \quad \text{cov}(M) \quad \text{cof}(N)$$

and $a = b = \kappa$.
Corollary

Let $\theta_0 \leq \kappa \leq \mu$ be uncountable regular cardinals, $\mu \leq \lambda$ such that $\lambda^{<\kappa} = \lambda$. Then, there is a ccc poset forcing

and $\alpha = b = \kappa$.
Corollary

Let $\theta_0 \leq \theta_1 \leq \kappa$ be uncountable regular cardinals, λ such that $\lambda^{<\kappa} = \lambda$. Then, there is a ccc poset forcing

$$\begin{align*}
\theta_0 & \leq \theta_1 \\
\lambda & \leq \kappa
\end{align*}$$

and $\alpha = b = \kappa$.
Theorem (M. 2013)

Let \(\mu \leq \nu \) be uncountable regular cardinals, \(\nu \leq \lambda \) such that \(\lambda^{\aleph_0} = \lambda \). Then, there is a ccc poset forcing...
... turned into a 3D-iteration!

Theorem

Let $\kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{\aleph_0} = \lambda$. Then, there is a ccc poset forcing

\[
\text{add}(N) \quad \text{non}(M) \quad \text{cov}(M) \quad \text{non}(N)
\]

and $\alpha = b$.
$V^H_\infty = V_{0,0,\kappa}$
$V^{H_n} = V_{0,0,\kappa}$

Diagram with nodes labeled $V_{\alpha,0,\kappa}$, $V_{\alpha,0,\gamma+1}$, $V_{0,0,\gamma}$, $V_{0,0,1}$, $V_{0,0,0}$, and A_0, A_γ. Edges connect these nodes with labels c_α and C.
\[V_{\alpha,0,\kappa} = V_{0,0,\kappa} \]

\[V_{\alpha+1,0,\kappa} = V_{0,0,\gamma+1} \]

\[V_{\alpha+1,0,\gamma+1} = V_{0,0,1} \]

\[V_{\alpha+1,0,1} = V_{0,0,0} \]

\[V_{\alpha+1,0,0} = V_{0,0} \]

\[V_{\lambda_\nu,0,\kappa} = V_{0,0,\kappa+1} \]

\[V_{\lambda_\nu,0,\gamma+1} = V_{0,0,1} \]

\[V_{\lambda_\nu,0,1} = V_{0,0} \]

\[V_{\lambda_\nu,0,0} = V_{0,0} \]

\[V_{\lambda_\nu,0,\kappa+1} = V_{0,0,1} \]

\[V_{\lambda_\nu,0,1} = V_{0,0} \]

\[V_{\lambda_\nu,0,0} = V_{0,0} \]

\[V_{\lambda_\nu,0,\gamma+1} = V_{0,0,1} \]

\[V_{\lambda_\nu,0,1} = V_{0,0} \]

\[V_{\lambda_\nu,0,0} = V_{0,0} \]

\[V_{\lambda_\nu,0,\kappa+1} = V_{0,0,1} \]

\[V_{\lambda_\nu,0,1} = V_{0,0} \]

\[V_{\lambda_\nu,0,0} = V_{0,0} \]
More examples

Theorem

Let $\theta_0 \leq \theta_1 \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_1} = \lambda$. Then, there is a ccc poset forcing

and $\alpha = b$.
Theorem

Let $\theta_0 \leq \kappa \leq \mu \leq \nu$ be uncountable regular cardinals, $\nu \leq \lambda$ such that $\lambda^{<\theta_0} = \lambda$. Then, there is a ccc poset forcing

and $a = b$.

What happens to α in a FS-iteration of \mathcal{D} of length $\mu > \aleph_1$ (regular) over a ground model where $\mathfrak{c} > \mu$?
Questions

Question
What happens to α in a FS-iteration of \mathbb{D} of length $\mu > \aleph_1$ (regular) over a ground model where $\kappa > \mu$?

Question
Is it possible to obtain $\alpha = b$ in Goldstern-M.-Shelah (2016) model of