Rosenthal families and the Grothendieck property

Damian Sobota

Institute of Mathematics, Polish Academy of Sciences

Winter School, Hejnice 2016

 μ – a bounded positive finitely additive **measure** on $\wp(\omega)$

 μ – a bounded positive finitely additive **measure** on $\wp(\omega)$

 $\varepsilon > 0$

 μ – a bounded positive finitely additive **measure** on $\wp(\omega)$

 $\varepsilon > 0$

Question: Can we find (n_k) such that $\mu(\bigcup_{k\in\omega} a_{n_k}) < \varepsilon$?

 μ – a bounded positive finitely additive **measure** on $\wp(\omega)$

 $\varepsilon > 0$

Question: Can we find (n_k) such that $\mu(\bigcup_{k\in\omega} a_{n_k}) < \varepsilon$?

Of course!

If $\omega = \bigcup_{k \in \omega} N_k$ is a partition $(N_k \in [\omega]^{\omega})$, then: $\sum_k \mu \Big(\bigcup_{n \in N_k} a_n\Big) \leqslant \mu(\omega) < \infty$

Measures on antichains

 (a_n) – an antichain in $\wp(\omega)$

 (μ_k) – a sequence of bounded positive finitely additive measures on $\wp(\omega)$

 $\varepsilon > 0$

Measures on antichains

 (a_n) – an antichain in $\wp(\omega)$

 (μ_k) – a sequence of bounded positive finitely additive measures on $\wp(\omega)$

 $\varepsilon > 0$

Question: Can we find (n_k) such that $\mu_{n_k} \left(\bigcup_{l \in \omega} a_{n_l} \right) < \varepsilon$ for every $k \in \omega$?

Measures on antichains

$$(a_n)$$
 – an antichain in $\wp(\omega)$

 (μ_k) – a sequence of bounded positive finitely additive measures on $\wp(\omega)$

 $\varepsilon > 0$

Question: Can we find (n_k) such that $\mu_{n_k} \left(\bigcup_{l \in \omega} a_{n_l} \right) < \varepsilon$ for every $k \in \omega$?

No! Unfortunately...

If
$$\mu_k = \delta_k$$
 and $a_n = \{n\}$ and $\varepsilon = 1/2$, then:

$$\mu_{n_k} \Big(\bigcup_{l \in \omega} a_{n_l}\Big) = \mu_{n_k} \Big(\bigcup_{l \neq k} a_{n_l}\Big) + \mu_{n_k}(a_{n_k}) = 0 + 1 > 1/2 = \varepsilon$$

Theorem (Rosenthal '70)

Let $(a_n : n \in \omega)$ be an antichain in $\wp(\omega)$. Assume (μ_k) is a sequence of positive finitely additive measures on $\wp(\omega)$ satisfying the inequality $\mu_k(\bigcup_{n\in\omega} a_n) < 1$ for every $k \in \omega$. Fix $\varepsilon > 0$.

Then, there exists an infinite set $A \subseteq \omega$ such that for every $k \in A$ the following inequality is satisfied:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Theorem (Rosenthal '70)

Let $(a_n : n \in \omega)$ be an antichain in $\wp(\omega)$. Assume (μ_k) is a sequence of positive finitely additive measures on $\wp(\omega)$ satisfying the inequality $\mu_k(\bigcup_{n\in\omega} a_n) < 1$ for every $k \in \omega$. Fix $\varepsilon > 0$.

Then, there exists an infinite set $A \subseteq \omega$ such that for every $k \in A$ the following inequality is satisfied:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Question: Can we control the choice of A?

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. \mathcal{F} is called **Rosenthal** if for every antichain (a_n) on ω , sequence (μ_k) of positive measures on ω such that $\mu_k (\bigcup_{n \in \omega} a_n) < 1$ for every $k \in \omega$, and $\varepsilon > 0$, there is $A \in \mathcal{F}$ such that:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. \mathcal{F} is called **Rosenthal** if for every antichain (a_n) on ω , sequence (μ_k) of positive measures on ω such that $\mu_k (\bigcup_{n \in \omega} a_n) < 1$ for every $k \in \omega$, and $\varepsilon > 0$, there is $A \in \mathcal{F}$ such that:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Definition (The Rosenthal number)

 $\mathfrak{ros} = \min\left\{ |\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{is Rosenthal} \right\}$

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. \mathcal{F} is called **Rosenthal** if for every antichain (a_n) on ω , sequence (μ_k) of positive measures on ω such that $\mu_k (\bigcup_{n \in \omega} a_n) < 1$ for every $k \in \omega$, and $\varepsilon > 0$, there is $A \in \mathcal{F}$ such that:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Definition (The Rosenthal number)

 $\mathfrak{ros} = \min\left\{ |\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{is Rosenthal} \right\}$

Fact

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. \mathcal{F} is called **Rosenthal** if for every antichain (a_n) on ω , sequence (μ_k) of positive measures on ω such that $\mu_k (\bigcup_{n \in \omega} a_n) < 1$ for every $k \in \omega$, and $\varepsilon > 0$, there is $A \in \mathcal{F}$ such that:

$$\mu_k\Big(\bigcup_{\substack{n\in A\\n\neq k}}a_n\Big)<\varepsilon.$$

Definition (The Rosenthal number)

 $\mathfrak{ros} = \min\left\{ |\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{is Rosenthal} \right\}$

Fact

$$0 \omega_1 \leqslant \mathfrak{ros} \leqslant \mathfrak{c}.$$

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be a non-principal ultrafilter. \mathcal{F} is **selective** (also **Ramsey**) if for every partition $\omega = \bigcup_{k \in \omega} N_k$ $(N_k \in \wp(\omega) \setminus \mathcal{F})$ there is $F \in \mathcal{F}$ such that $|F \cap N_k| = 1$ for every $k \in \omega$.

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be a non-principal ultrafilter. \mathcal{F} is **selective** (also **Ramsey**) if for every partition $\omega = \bigcup_{k \in \omega} N_k$ $(N_k \in \wp(\omega) \setminus \mathcal{F})$ there is $F \in \mathcal{F}$ such that $|F \cap N_k| = 1$ for every $k \in \omega$.

Theorem (Rudin '56)

Assuming CH, there is a selective ultrafilter.

Theorem (Shelah '82)

There is a model of ZFC without selective ultrafilters.

Selective ultrafilters

Theorem (S.)

Assume \mathcal{U} is a base of a selective ultrafilter. Then \mathcal{U} is Rosenthal.

Theorem (S.)

Assume \mathcal{U} is a base of a selective ultrafilter. Then \mathcal{U} is Rosenthal.

 $\mathfrak{u}_{s} = \min \{ |\mathcal{U}| : \mathcal{U} \text{ is a base of a selective ultrafilter} \}$

So $\mathfrak{u}_s \ge \mathfrak{ros}$.

Theorem (Baumgartner and Laver '79)

There is a model of ZFC in which $\mathfrak{u}_s = \omega_1 < \omega_2 = \mathfrak{c}$.

Theorem (S.)

Assume \mathcal{U} is a base of a selective ultrafilter. Then \mathcal{U} is Rosenthal.

 $\mathfrak{u}_{s} = \min \{ |\mathcal{U}| : \mathcal{U} \text{ is a base of a selective ultrafilter} \}$

So $\mathfrak{u}_s \ge \mathfrak{ros}$.

Theorem (Baumgartner and Laver '79)

There is a model of ZFC in which $\mathfrak{u}_s = \omega_1 < \omega_2 = \mathfrak{c}$.

Corollary

It is consistent that $\omega_1 = \mathfrak{ros} < \mathfrak{c}$.

An immediate application: operators from ℓ_∞

$$\ell_{\infty} = \{x \in \mathbb{R}^{\omega} : \|x\|_{\infty} := \sup_{n \in \omega} |x(n)| < \infty\}$$

$$c_0 = \{x \in \ell_\infty : \lim_{n \to \infty} x(n) = 0\}$$

An immediate application: operators from ℓ_∞

$$\ell_{\infty} = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_{\infty} := \sup_{n \in \omega} |x(n)| < \infty \right\}$$

$$c_0 = \{x \in \ell_\infty : \lim_{n \to \infty} x(n) = 0\}$$

Theorem

(*Rosenthal '70)* Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be an uncountable almost disjoint family.

Let X be a Banach space, $T : \ell_{\infty} \to X$ a continuous operator such that $T|_{c_0}$ is an isomorphism.

An immediate application: operators from ℓ_{∞}

$$\ell_{\infty} = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_{\infty} := \sup_{n \in \omega} |x(n)| < \infty \right\}$$

$$c_0 = \{x \in \ell_\infty : \lim_{n \to \infty} x(n) = 0\}$$

Theorem

(*Rosenthal '70)* Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be **an uncountable almost** disjoint family.

Let X be a Banach space, $T : \ell_{\infty} \to X$ a continuous operator such that $T|_{c_0}$ is an isomorphism.

Then there is such $M \in \mathcal{F}$ that $T|_{\ell_{\infty}(M)}$ is an isomorphism.

An immediate application: operators from ℓ_∞

$$\ell_{\infty} = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_{\infty} := \sup_{n \in \omega} |x(n)| < \infty \right\}$$

$$c_0 = \{x \in \ell_\infty : \lim_{n \to \infty} x(n) = 0\}$$

Theorem

(*Rosenthal '70)* Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be an uncountable almost disjoint family.

Let X be a Banach space, $T : \ell_{\infty} \to X$ a continuous operator such that $T|_{c_0}$ is an isomorphism. Then there is such $M \in \mathcal{F}$ that $T|_{\ell_{\infty}(M)}$ is an isomorphism.

 Let F ⊆ [ω]^ω be a base of a selective ultrafilter. Let X be a Banach space... X – a Banach space

 X^* – **the dual** of X – the space of continuous functionals on X

 X^{**} – *the bidual* of X – the space of continuous functionals on X^*

 $X \hookrightarrow X^{**}$ by $x \mapsto ev_x$ where $ev_x(x^*) = x^*(x)$ for $x^* \in X^*$

X – a Banach space

 X^* – **the dual** of X – the space of continuous functionals on X

 X^{**} – *the bidual* of X – the space of continuous functionals on X^*

$$X \hookrightarrow X^{**}$$
 by $x \mapsto ev_x$ where $ev_x(x^*) = x^*(x)$ for $x^* \in X^*$

Two topologies on X*

● (X, w) -**the weak** topology on X – the weakest topology in which every $x^{**} \in X^{**}$ is continuous

X – a Banach space

 X^* – the dual of X – the space of continuous functionals on X

 X^{**} – **the bidual** of X – the space of continuous functionals on X^*

$$X \hookrightarrow X^{**}$$
 by $x \mapsto ev_x$ where $ev_x(x^*) = x^*(x)$ for $x^* \in X^*$

Two topologies on X*

- (X, w) -**the weak** topology on X the weakest topology in which every $x^{**} \in X^{**}$ is continuous
- ② (X, w^{*}) the weak^{*} topology on X the weakest topology in which every ev_x ∈ X^{**} (x ∈ X) is continuous

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

• reflexive spaces, e.g. ℓ_p for 1

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- () reflexive spaces, e.g. ℓ_p for 1
- $2 \ell_{\infty}$

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

() reflexive spaces, e.g. ℓ_p for 1

2
$$\ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$$

3 $C(St(\mathcal{A}))$ for $\mathcal{A} \sigma$ -complete

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- **(**) reflexive spaces, e.g. ℓ_p for 1
- $e \ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$
- **3** C(St(A)) for $A \sigma$ -complete
- on Neumann algebras

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- **(**) reflexive spaces, e.g. ℓ_p for 1
- $e \ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$
- **3** C(St(A)) for $A \sigma$ -complete
- on Neumann algebras

Notable counterexamples

1 1

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- () reflexive spaces, e.g. ℓ_p for 1
- $e \ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$
- **3** C(St(A)) for $A \sigma$ -complete
- on Neumann algebras

Notable counterexamples

- $\textcircled{1} \ell_1$
- **2** C(K) if c_0 is complemented in it

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- () reflexive spaces, e.g. ℓ_p for 1
- $e \ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$
- **3** C(St(A)) for $A \sigma$ -complete
- on Neumann algebras

Notable counterexamples

- $1 \ell_1$
- **2** C(K) if c_0 is complemented in it
- C(K) if K has a non-trivial converging sequence

Definition

A Banach space X has **the Grothendieck property** if every weak* convergent sequence $(x_n^* \in X^* : n \in \omega)$ is weakly convergent.

Notable examples

- () reflexive spaces, e.g. ℓ_p for 1
- $e \ell_{\infty} \cong C(\beta \omega) \cong C(St(\wp(\omega)))$
- **3** $C(St(\mathcal{A}))$ for $\mathcal{A} \sigma$ -complete
- on Neumann algebras

Notable counterexamples

- $\textcircled{1} \ell_1$
- **2** C(K) if c_0 is complemented in it
- C(K) if K has a non-trivial converging sequence
- $C(St(\mathcal{A}))$ if $|\mathcal{A}| \leq \max(\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$

Definition

A Boolean algebra A has **the Grothendieck property** if C(St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

 $\mathfrak{g} = \min \{ |\mathcal{A}| : \mathcal{A} \text{ has the Grothendieck property} \}.$

Definition

A Boolean algebra A has **the Grothendieck property** if C(St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

 $\mathfrak{g} = \min \{ |\mathcal{A}| : \mathcal{A} \text{ has the Grothendieck property} \}.$

Fact

 $\max(\mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leq \mathfrak{g} \leq \mathfrak{c}.$

Definition

A Boolean algebra A has **the Grothendieck property** if C(St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

 $\mathfrak{g} = \min \{ |\mathcal{A}| : \mathcal{A} \text{ has the Grothendieck property} \}.$

Fact

 $\max(\mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leqslant \mathfrak{g} \leqslant \mathfrak{c}.$

Theorem (Brech '06)

It is consistent that $\omega_1 = \mathfrak{g} < \mathfrak{c}$.

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every weak* null sequence (μ_n) of real-valued measures on A which is not weakly null

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every weak* null sequence (μ_n) of real-valued measures on \mathcal{A} which is not weakly null, there exist $\gamma < \kappa$

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every weak* null sequence (μ_n) of real-valued measures on \mathcal{A} which is not weakly null, there exist $\gamma < \kappa$, an increasing sequence (n_k) of natural numbers and $\varepsilon > 0$

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every weak* null sequence (μ_n) of real-valued measures on \mathcal{A} which is not weakly null, there exist $\gamma < \kappa$, an increasing sequence (n_k) of natural numbers and $\varepsilon > 0$ such that for every $k \in \omega$ the following inequality is satisfied: $|\mu_{n_k}(a_k^{\gamma})| > \varepsilon$.

Let κ be a cardinal number. A Boolean algebra \mathcal{A} has **the** κ -**anti-Grothendieck property** if there exists a family $\{(a_n^{\gamma} \in \mathcal{A} : n \in \omega) : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every weak* null sequence (μ_n) of real-valued measures on \mathcal{A} which is not weakly null, there exist $\gamma < \kappa$, an increasing sequence (n_k) of natural numbers and $\varepsilon > 0$ such that for every $k \in \omega$ the following inequality is satisfied: $|\mu_{n_k}(a_k^{\gamma})| > \varepsilon$.

Definition

 $\mathfrak{g}_{a} = \min \{ \kappa : \text{every ctbl } \mathcal{A} \text{ has the } \kappa \text{-anti-Grothendieck property} \}.$

Small algebras with the Grothendieck property

Fact

 $\mathfrak{b} \leqslant \mathfrak{g}_a \leqslant \mathfrak{c}.$

 $\mathfrak{b} \leqslant \mathfrak{g}_{a} \leqslant \mathfrak{c}.$

Theorem (S.)

If κ is a cardinal such that $\kappa \ge \max(\mathfrak{g}_a, \mathfrak{ros})$ and $\operatorname{cof}([\kappa]^{\omega}) = \kappa$,

 $\mathfrak{b} \leqslant \mathfrak{g}_a \leqslant \mathfrak{c}.$

Theorem (S.)

If κ is a cardinal such that $\kappa \ge \max(\mathfrak{g}_a, \mathfrak{ros})$ and $\operatorname{cof}([\kappa]^{\omega}) = \kappa$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ (hence $\mathfrak{g} \le \kappa$).

 $\mathfrak{b} \leqslant \mathfrak{g}_a \leqslant \mathfrak{c}.$

Theorem (S.)

If κ is a cardinal such that $\kappa \ge \max(\mathfrak{g}_a, \mathfrak{ros})$ and $\operatorname{cof}([\kappa]^{\omega}) = \kappa$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ (hence $\mathfrak{g} \le \kappa$).

Problem

Estimate (determine!) the value of g_a .

 $\mathfrak{b} \leqslant \mathfrak{g}_a \leqslant \mathfrak{c}.$

Theorem (S.)

If κ is a cardinal such that $\kappa \ge \max(\mathfrak{g}_a, \mathfrak{ros})$ and $\operatorname{cof}([\kappa]^{\omega}) = \kappa$, then there exists a Boolean algebra \mathcal{A} with the Grothendieck property and of cardinality κ (hence $\mathfrak{g} \le \kappa$).

Problem

Estimate (determine!) the value of g_a .

```
Conjecture: \mathfrak{g}_a \leq \operatorname{cof}(\mathcal{N}).
```

Thank you for your attention...

Transfinite methods in Banach spaces and algebras of operators

Confirmed speakers:

Dales, Dow, Godefroy, Todorčević...

https://www.impan.pl/~set_theory/Banach2016/