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Measures on antichains

(an) – an antichain in ℘(ω) (i.e. an ⊆ ω, an ∩ am = ∅ if n 6= m)

µ – a bounded positive finitely additive measure on ℘(ω)

ε > 0

Question: Can we find (nk) such that µ
(⋃
k∈ω ank

)
< ε?

Of course!

If ω =
⋃
k∈ω Nk is a partition (Nk ∈ [ω]ω), then:∑

k

µ
( ⋃
n∈Nk

an
)
¬ µ(ω) <∞
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Measures on antichains

(an) – an antichain in ℘(ω)

(µk) – a sequence of bounded positive finitely additive measures
on ℘(ω)

ε > 0

Question: Can we find (nk) such that µnk
(⋃
l∈ω anl

)
< ε for every

k ∈ ω?

No! Unfortunately...

If µk = δk and an = {n} and ε = 1/2, then:

µnk

( ⋃
l∈ω

anl
)
= µnk

( ⋃
l 6=k

anl
)
+ µnk (ank ) = 0 + 1 > 1/2 = ε

Damian Sobota Rosenthal families and the Grothendieck property



Measures on antichains

(an) – an antichain in ℘(ω)

(µk) – a sequence of bounded positive finitely additive measures
on ℘(ω)

ε > 0

Question: Can we find (nk) such that µnk
(⋃
l∈ω anl

)
< ε for every

k ∈ ω?

No! Unfortunately...

If µk = δk and an = {n} and ε = 1/2, then:

µnk

( ⋃
l∈ω

anl
)
= µnk

( ⋃
l 6=k

anl
)
+ µnk (ank ) = 0 + 1 > 1/2 = ε

Damian Sobota Rosenthal families and the Grothendieck property



Measures on antichains

(an) – an antichain in ℘(ω)

(µk) – a sequence of bounded positive finitely additive measures
on ℘(ω)

ε > 0

Question: Can we find (nk) such that µnk
(⋃
l∈ω anl

)
< ε for every

k ∈ ω?

No! Unfortunately...

If µk = δk and an = {n} and ε = 1/2, then:

µnk

( ⋃
l∈ω

anl
)
= µnk

( ⋃
l 6=k

anl
)
+ µnk (ank ) = 0 + 1 > 1/2 = ε

Damian Sobota Rosenthal families and the Grothendieck property



Rosenthal’s lemma

Theorem (Rosenthal ’70)

Let (an : n ∈ ω) be an antichain in ℘(ω). Assume (µk) is a
sequence of positive finitely additive measures on ℘(ω) satisfying
the inequality µk (

⋃
n∈ω an) < 1 for every k ∈ ω. Fix ε > 0.

Then, there exists an infinite set A ⊆ ω such that for every k ∈ A
the following inequality is satisfied:

µk
( ⋃
n∈A
n 6=k

an
)
< ε.

Question: Can we control the choice of A?
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Rosenthal families

Definition

Let F ⊆ [ω]ω. F is called Rosenthal if for every antichain (an) on
ω, sequence (µk) of positive measures on ω such that
µk (

⋃
n∈ω an) < 1 for every k ∈ ω, and ε > 0, there is A ∈ F such

that:
µk
( ⋃
n∈A
n 6=k

an
)
< ε.

Definition (The Rosenthal number)

ros = min
{
|F| : F ⊆ [ω]ω is Rosenthal

}
Fact
1 ω1 ¬ ros ¬ c.
2 Assuming MA, ros = c.
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Selective ultrafilters

Definition

Let F ⊆ [ω]ω be a non-principal ultrafilter. F is selective (also
Ramsey) if for every partition ω =

⋃
k∈ω Nk (Nk ∈ ℘(ω) \ F)

there is F ∈ F such that |F ∩ Nk | = 1 for every k ∈ ω.

Theorem (Rudin ’56)

Assuming CH, there is a selective ultrafilter.

Theorem (Shelah ’82)

There is a model of ZFC without selective ultrafilters.
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Selective ultrafilters

Theorem (S.)

Assume U is a base of a selective ultrafilter. Then U is Rosenthal.

us = min
{
|U| : U is a base of a selective ultrafilter

}
So us  ros.

Theorem (Baumgartner and Laver ’79)

There is a model of ZFC in which us = ω1 < ω2 = c.

Corollary

It is consistent that ω1 = ros < c.
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An immediate application: operators from `∞

`∞ =
{

x ∈ Rω : ‖x‖∞ := supn∈ω |x(n)| <∞
}

c0 =
{

x ∈ `∞ : limn→∞ x(n) = 0
}

Theorem
1 (Rosenthal ’70) Let F ⊆ [ω]ω be an uncountable almost

disjoint family.
Let X be a Banach space, T : `∞ → X a continuous operator
such that T |c0 is an isomorphism.
Then there is such M ∈ F that T |`∞(M) is an isomorphism.

2 Let F ⊆ [ω]ω be a base of a selective ultrafilter.
Let X be a Banach space...
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Weak topologies on Banach spaces

X – a Banach space

X ∗ – the dual of X – the space of continuous functionals on X

X ∗∗ – the bidual of X – the space of continuous functionals on X ∗

X ↪→ X ∗∗ by x 7→ evx where evx(x∗) = x∗(x) for x∗ ∈ X ∗

Two topologies on X ∗

1 (X ,w) – the weak topology on X – the weakest topology in
which every x∗∗ ∈ X ∗∗ is continuous

2 (X ,w∗) – the weak* topology on X – the weakest topology
in which every evx ∈ X ∗∗ (x ∈ X ) is continuous
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The Grothendieck property

Definition

A Banach space X has the Grothendieck property if every weak*
convergent sequence (x∗n ∈ X ∗ : n ∈ ω) is weakly convergent.

Notable examples
1 reflexive spaces, e.g. `p for 1 < p <∞

2 `∞∼= C (βω) ∼= C (St(℘(ω)))
3 C (St(A)) for A σ-complete
4 von Neumann algebras

Notable counterexamples
1 `1
2 C (K ) if c0 is complemented in it
3 C (K ) if K has a non-trivial converging sequence
4 C (St(A)) if |A| ¬ max(s, cov(M))
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The Grothendieck number

Definition

A Boolean algebra A has the Grothendieck property if
C (St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

g = min
{
|A| : A has the Grothendieck property

}
.

Fact

max(s, cov(M)) ¬ g ¬ c.

Theorem (Brech ’06)

It is consistent that ω1 = g < c.

Damian Sobota Rosenthal families and the Grothendieck property



The Grothendieck number

Definition

A Boolean algebra A has the Grothendieck property if
C (St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

g = min
{
|A| : A has the Grothendieck property

}
.

Fact

max(s, cov(M)) ¬ g ¬ c.

Theorem (Brech ’06)

It is consistent that ω1 = g < c.

Damian Sobota Rosenthal families and the Grothendieck property



The Grothendieck number

Definition

A Boolean algebra A has the Grothendieck property if
C (St(A)) has the Grothendieck property.

Definition (The Grothendieck number)

g = min
{
|A| : A has the Grothendieck property

}
.

Fact

max(s, cov(M)) ¬ g ¬ c.

Theorem (Brech ’06)

It is consistent that ω1 = g < c.

Damian Sobota Rosenthal families and the Grothendieck property



Small algebras with the Grothendieck property

Definition (The κ-anti-Grothendieck property)

Let κ be a cardinal number. A Boolean algebra A has the
κ-anti-Grothendieck property if there exists a family{
(aγn ∈ A : n ∈ ω) : γ < κ

}
of κ many antichains in A with the

following property:

for every weak* null sequence (µn) of real-valued
measures on A which is not weakly null, there exist
γ < κ, an increasing sequence (nk) of natural numbers
and ε > 0 such that for every k ∈ ω the following
inequality is satisfied:

∣∣µnk (aγk)| > ε.

Definition

ga = min
{
κ : every ctbl A has the κ-anti-Grothendieck property

}
.
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of κ many antichains in A with the

following property:

for every weak* null sequence (µn) of real-valued
measures on A which is not weakly null, there exist
γ < κ, an increasing sequence (nk) of natural numbers
and ε > 0 such that for every k ∈ ω the following
inequality is satisfied:

∣∣µnk (aγk)| > ε.

Definition

ga = min
{
κ : every ctbl A has the κ-anti-Grothendieck property

}
.
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Small algebras with the Grothendieck property

Fact
b ¬ ga ¬ c.

Theorem (S.)

If κ is a cardinal such that κ  max(ga, ros) and cof([κ]ω) = κ,
then there exists a Boolean algebra A with the Grothendieck
property and of cardinality κ (hence g ¬ κ).

Problem

Estimate (determine!) the value of ga.

Conjecture: ga ¬ cof(N ).
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Almost the end...

Thank you for your attention...
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