Effective Descriptive Set Theory

what it is about

Lecture 2, Effective Borel, analytic and co-analytic pointsets

Yiannis N. Moschovakis

UCLA and University of Athens
www.math.ucla.edu/~ynm

Winter school in Hejnice, Czech Republic,
30 January — 6 February, 2016
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Lecture 1. Recursion in Polish spaces
Lecture 2. Effective Borel, analytic and co-analytic pointsets

Lecture 3. Structure theory for pointclasses

e Definitions and basic facts in the first lecture:

— Recursive Polish space — just space from now on

— Pointset: a subset P C X of a space

— Pointclass: a collection I of pointsets, (X)) ={PC X : P e}

— ¥9: the pointclass of semirecursive pointsets

— Locally recursive partial functions f : X — Y

—Thepointsof 1 yel < U(y)={s:y e Ns(Y)} € I(N)

* The Refined Surjection Theorem

* Parametrized pointclasses, the 2nd Recursion Theorem

— The Kleene calculus for local recursion, the 2nd Recursion Theorem
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Two basic facts from Lecture 1

e If a pointclass ' is parametrized, then

(1) T is closed under total recursive substitutions, and
(2) every I'(X) has a parametrization, a pointset G € (N x X)
such that for every P € (N x X), there is a total recursive

SP . N — N satisfying | P(a, x) <= G(S”(a),x)

= 2nd RT: P e (N x X) = (3 recursive €) ‘ P(g,x) <= G(c, x)‘

e Refined Surjection Theorem For every space X, there is a total
recursive function 7 : N'— X and a N set F C N such that

7 is one-to-one on F,w[F] = X,
and {(x,s) : 7 }(x) € Ns(N) N F} is X3

— Used to prove results for N and then transfer them to all X
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Relativized and boldface versions of pointclasses

If T is parametrized, then:

e The relativization I'[x] of ' to a point x € X is the pointclass of
all x-sections of pointsets in I,

Mx](Y)={Px CY:Pel(X x))},
where Py(y) <= P(x,y) (o€ X?[B] <= « is recursive in [3)

= Each '[x] is parametrized

e The boldface version I' of T is the union of all its relativizations,

r= UX,XGX Mx] = U-en el
e The ambiguous (self-dual) pointclass of I is A = N =I; this is not
in general parametrized, and (by definition)

Alx] =T[x]n—=lx], A=Tn-r
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The analytical and projective pointclasses

e The arithmetical pointclasses are defined by induction on k > 1:
9, My=-x, I, =3'NY, AY=x)nn}
e The Borel pointclasses of finite order are their boldface versions
0Nt AV=3x0nn?
e The analytical pointclasses are defined by induction on k > 1:

Z% = EINI_I87 nk = _‘Zia Z]I;Jrl = E|N|_|k’ A= Zi n n%(
Y1(X) : P(x) <= (3a)(Vt)Q(x,a,t) with Q@ € (X x N x N)
NHX) : P(x) <= (Va)(Ft)Q(x,, t) with Q € NI(X x N x N)
e The (classical) projective pointclasses are their boldface versions,

i, N, Al=x;nN;
N : P(x) < (Va)(3t)Q(e,x,a, t) (Q €Y, some e € N)
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Elementary properties of the analytical pointclasses

= Y, I'I}(, A,l( are closed under recursive substitutions, &,V, 3", v
o a— af = (At)a(t+1), (i,a) (a); = (At)a((i,t)) are recursive

= Y1 is closed under 3¥, T} is closed under V>, A} is closed under —
(the proof uses the recursive surjection 7 : N —» )

= y € Aj[x] < y € Ti[x] < the singleton {y} is in £}[x]

Theorem For all k > 1 and x, M, Ni[x], £} and ¥1[x] are parametrized

= P € NL(X) <= P is a section G, of G; a is a M}-code of P

= ML(X) is uniformly closed under countable unions;

i.e., for some recursive u: N — N, |U; G(a), = Gy(a)

Proof. Set P(a,x) <= (3i)G(();,x) and take u(a) = SP(a)
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The arithmetical and analytical hierarchies

CZ?(X) T CZ%(X) CZ%(X)---
2 Q + + Q *
AJ(X) AJ(X) C A{(X) A(X)
< G < S G S
n9(x) - Ni(x) n3(x) -

The Hierarchy Theorem for infinite X’
= In fact, for perfect X and every k > 1,
T(X)\ AL(X) #0

o Classical regularity results: Every X1 set P C R is Lebesgue
measurable; it has the property of Baire; and if it is uncountable,
then it has a non-empty perfect subset

e This is most of what can be proved about projective pointsets
and the analytical and projective pointclasses in ZFC
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The limits of ZFC in Descriptive Set Theory

e An almost complete theory was developed in 1905 - 1938 for the
classical pointclasses

! (analytic), ni (co-analytic) and ¥l (PCA)

and the pointsets in them, and effective versions of these results
were quickly proved in the late 50's

e But this is as far as you can go in ZFC, for example

- in Godel's L there is an uncountable ¥} set of real numbers
which is not Lebesgue measurable, does not have the property of
Baire and has no non-empty perfect subset (Godel 1938, Addison
1959), and

- there are forcing models of ZFC in which all projective sets of
real numbers have these regularity properties (Solovay 1970,
assuming an inaccessible)
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Determinacy and large cardinal hypotheses

e In the period 1966 - (roughly) 1990, all the basic facts about
) I'I% and Z% were extended to all the projective pointclasses on
the basis of large cardinal hypotheses

e A key step was the introduction in 1967 of determinacy (game
theoretic) hypotheses which were used to establish these results;
in 1988 it was shown by Martin, Steel and Woodin that these
hypotheses follow from the existence of Woodin cardinals

e The use of effective methods is essential in the derivation of
consequences of projective determinacy—a fact which encouraged
the development of EDST

e In the sequel we will formulate and derive some of the basic
results about X1, M1, Al and their boldface versions X1, M3, A] on
the basis of ZF+DC (the Axiom of Depended Choices)

e Whenever it is possible, we will use methods which can be used
to extend these results to many other pointclasses
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* Borel and hyperarithmetical pointsets

e B(X) is the smallest family of subsets of X" which contains all
the open sets and is closed under complements and countable unions
e To get the effective lightface version of B(X), we code B(X) in NV:

Def Set K; = {a : «(0) = 0} and for each £ > 1, by recursion
Ke = Ky U {a : a(0) # 0 & (Vn) [(a*),, € Uyee Kn” (€>1)
Def For each X, fix a parametrization G* C NV x X of £I(X) and set
1 Vel YOS ; —
X _ Gy = {x: G (a*,x)}, ifa(0)=0,
o€ U, (X \ B(/E*)zm(f))’ otherwise,
where 7)(i) = least 7 so that (a*); € K,
= a € (KenKy) = Béf&:BéfC:Bf; set K = [, Ke

= A€ B(X) < A= By for some a € K

Def | A € HYP(X) <= A = BY for some recursive a € K
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Coded sets and uniformities

Def A coding of a set A on | C N is any surjection 7 : | — A,
and a coded set is any pair (A, 7) of a set and a coding of it

e Mi(X) on N by a — G,, with G a parametrization of M}(X)
e Al(X)on {aeN: G(a)y = X\ Ga))} by @ = Gy, (same G)
e B(X) on Kby a+ BY

= B(X) is uniformly closed under complementation, i.e., there is a
locally recursive u : N'— N such that

aeK = (u(a)l &u(a)eK&Biﬁa):X\Bg)

Proof. Let v(a) = (An)a((n)1); then v(a)({i, t)) = a(t) for all ¢, so
acK = (Vi)|[(v(a))i=aeK] = B(Xv(a))[ =By

«

and we can set u(a) = (1) “v(«) e In this case, the uniformity u is total
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Hyperarithmetical (effectively Borel) pointsets

e Each B(X) is coded on K by a +— B:¥

Def A pointset P C X is hyperarithmetical (effectively Borel) if it
has a recursive Borel code, i.e., P = B with a recursive a

e HYP(X) is coded on {a € K : « is recursive} by a +— BY

= The coded pointclass B is uniformly closed under
&, Vv, -, 3N VYN continuous substitutions and countable unions

= The coded pointclass HYP is uniformly closed under
&,V,, EIN,VN, recursive substitutions and recursive countable unions

= These facts hold independently of the choice of a
parametrization of (X)) used to define the map a +— B:Y,
because different choices produce (suitably defined) equivalent codings
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* The easy half of the Suslin-Kleene Theorem

Theorem For each X, B(X) C AY(X) uniformly,
i.e., there is a locally recursive u: N'— N such that

(x) aeK = (u(oz)l & u(a) is a Al(X)-code of Bg)
Proof. Define first a locally recursive v : N' x N’ — N such that
(YDH{eV "N (a)(i)| and is a Al-code of A; C X]
= (v(s,oz)l and is a A](X)-code of U,-(X\A,-)>
Set u(a) = {€}(«), where by the 2nd RT for partial functions

a Al(X)-code of GL., if a(0) =0,

v(g, o) otherwise

{eHa) = {

Proof of (%) is by induction on the least £ such that o € K¢

e Effective transfinite recursion, the most basic tool of EDST
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* The Suslin-Kleene Theorem

Theorem For each X, A}(X) C B(X) uniformly
i.e., there is a locally recursive u : N'— N such that

if ais a Al-code of AC X, then (u(a)l, ula) eK& A= Bjia))

= (Suslin 1916) For every X, A}(X) = B(X) Constructive proof!
= (Kleene 1955) Al(N) = HYP(N) uniformly (with his codings)

e There are several proofs. They all first prove the result for N’
using Effective Transfinite Recursion and the Normal Form
Theorem for M}(N) pointsets (coming up next) and then they
appeal to the Refined Surjection Theorem

= (Classical Corollary, may or may not be interesting) There is a
Gs set C C N and a continuous u: C — N such that

if avis a Al-code of A C X, then (a eC& A= Bj?@)

e No proof of this is known which does not use effective methods but . ..
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* The Normal Form Theorems for M}(AN), Zi(N)
Theorem If P € Mi(N), then for some recursive R C N x N

P(a) <= (¥B)(3Et)R(a(t), 5(t))

where | @(t) = (a(0),...,a(t — 1)) = 2a(0)+1 pa(§—1)+1

t—

is the sequence code of ((0),...,a(t — 1))
- because if @ € ZI(N?), then Q( B) < (3t)R(a(t),B(t))
Theorem If P € £}(N), then for some recursive R C N x N
a € P < (3B)(V)R(a(t), 5(1))
and so
P = proj[C] with C = {(a, B) : (Vt)R(@(t), B(t))} in M°

so that, in particular, C is closed

e Similar equivalences (trivially) hold for Mi[¢](N") and Zi[e](N")
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The Effective Perfect Set Theorem

Theorem (Suslin 1916) Every uncountable X1 pointset has a
non-empty perfect subset (and so has cardinality 2%)

e This was previously proved for Borel sets by Hausdorff and
Alexandroff (independently) and was a big deal at the time

It is the strongest result about the Continuum Hypothesis which
can be proved in ZFC

Theorem (Harrison 1967) If A € £1[x]()) and A has a member
y ¢ Al[x], then A has a non-empty perfect subset

e Recall that
y €Al = U(y) = {s: x € Ns(V)} € AI[X](N),

and Al[x](N) is countable, so {y : y € Al[x]} is countable,
and Harrison's Theorem implies—and “explains” —Suslin’s result
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Plan for proving the

Effective Perfect Set Theorem If A € £}[x]())) and A has a
member y ¢ A}[x], then A has a non-empty perfect subset

Lemma 1 If A€ Z}[x](), A# 0 and A has no Al[x] member,
then A has a non-empty perfect subset

e Proof on the next slide, basically a proof of the classical theorem

Lemma 2 (Upper classification of A}[x]) For each point x, the
pointset set {y € V : y € A}[x]} is Mi[x]

e We will derive Lemma 2 from some basic results of the effective
theory in the next lecture

e Proof of the Theorem from the two lemmas. If A C Y is ¥1[x]
and has at least one member not in Al[x], then, by Lemma 2,
A\{y € YV :y e Al[x]} is Z1[x], not empty and has no Al[x]
member; and so it has a non-empty perfect subset by Lemma 1
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Proof of Lemma 1 for N/

Lemma If A€ Xi[e](N), A# 0 and A has no Al[e] member, then
A has a non-empty, compact perfect subset

e By the Normal Form Theorem for ¥1[¢](N),
A = proj(C) with C C N x N in NY[¢]

For any pair w = (m1(w), m2(w)) of sequence codes, let

Cw = {(, B) € C: (3t)[m(w) = a(t) & ma(w) = B(t)]} € M(N?)

= ‘ proj(Cy) is never a singleton‘ ; because if proj(Cy) = {ap}, then

a=ag < (38)[(o, B) € Cu] and so ag is Af[e]

0

e For any w = (m1(w), m2(w)), choose w®, w! such that

proj(Cu) # 0) = (proj(Cun) # 0 proj(Cun) # 0,
proj( C,0)Uproj(C,1) C proj(Cw), proj(C,o)Nproj(C,1) = (Z))
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A = proj(C) with C C N x N in NY[€]
Cw = {(a.8) € C: (3t)[m(w) = a(t), m2(w) = B(t)] € M(N?)
proj(Cu) # 0 = (proi(Cus) # 0, proi(Cun) # 0
proj(C,0) U proj(C,1) C proj(Cy), and proj(C,o) N proj(C,1) = @)

e For each code w = (wp, wi, ..., w) of a binary sequence, define
Cy so that C< y = C, Cw*<0> = C,0, CW*<1> =C,1

Cl

° UW:Nﬁ{O’l} M: Gs(x) is the required compact, perfect subset of proj(C)
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