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A result on colorings of open covers

A finite coloring of A is a function f: A — k for some k € w.
B C A'is monochromatic if there is i € k with f(b) =i for all
be B.

Theorem (Tsaban 2015)
Let (X, 7) be a topological space and f : 7 U [r]?> — k be a finite
coloring. Suppose that X is Menger and U is a point-infinite open
cover of X without finite subcovers. Then there are mutually
disjoint finite subsets Fy, Fi,... of U whose unions V,, :== |J F,
have the following properties:

> Unery, Vo # Unen, Va for any finite non-empty Ho, Hy C w

such that max Hy < min Hy;

» f(Unen Va) is the same for all finite non-empty H C w;

> f{Uner, Vs Unem, Val) is the same for any finite
non-empty Hy, Hi C w such that max Hy < min Hy;

» {V, :n € w} covers X.
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Hindman's Theorem

For a sequence {(a; : i € w) in a semigroup S, and F € [S]<¥\ {0},
F = {ig,...,ix} Cw with ig < -+ < i, we set

ap = aj; + -+ a;, -

FS{a;:i€w):={ap: F € [w]<¥Y F # 0}.

Theorem (Hindman 1974)

For each finite coloring of w, there exists an increasing sequence

(a; : 1 € w) of natural numbers such that the set FS{a; : i € w) is
monochromatic. O

Given p,q € BS, we let A € p+ q iff
{beS:3Ce€q(b+CCA}ep.

p+q € BS. This extends the addition from S to 35, with the
following continuity properties:

1. For every x € S, the function ¢ — = + ¢ is continuous;

2. For every ¢ € S, the function p — p + ¢ is continuous.
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Fact. Any compact semigroup T satisfying item 2 above has an
idempotent element.

Proof. Zorn’s Lemma provides us with a minimal closed
subsemigroup E of T, and minimality yields £ = {e} for some
idempotent e € T. Indeed, fix e € E. As E + e is a closed
subsemigroup of F, we have E+e = FE. Thus
T:={teFE:t+e=¢e}is a closed subsemigroup of E,
and hence T=FE. Soe+e=ce. |

Proof of Hindman's Theorem by Galvin and Glazer.

Fix an idempotent element e € Sw. Let f be a k-coloring of w.
Pick i € k with Ag:= f~1(i) € e and set a_; = 0.

By induction on n € w, pick a, > an_1, an € Ap, and A1 C A,
in e such that a,, + A,+1 C A,. Considering the sums from right
to left, we get that all sums a;, + - - - + a;,, lie in A;, C Ag, where
10 < ...<im. Thus F'S{a;:i € w) is monochromatic.



The Milliken-Taylor Theorem

For F, H € [w]<¥ \ {0}, FF < H means max F' < min H.

A sumsequence of {(a; : i € w) € S¥ is a sequence (ap, : i € w), where
F; C w are nonempty finite and F; < F;; for all i. The relation of
being a sumsequence is transitive.

(b; 11 € w) € S¥is proper if bp # by for all F < H in [w]<“\ 0.

The sum graph of a proper sequence (b; : i € w) € S¥ is

{{bp,bu}: F < H, F,H € [w]<*\ 0} C [FS(b; : i € w)]*.

For a set X we consider [X]|<“ with the operation U which turns it into a
semigroup.

Theorem (Milliken 1975, Taylor 1976)

1. For each finite coloring of the set [[w]<“]?, there are elements

Fo < Fy <--- in [w]<¥ such that the sum graph of Fy, Fy,... is
monochromatic.

2. Let S be a semigroup, and {(a; :i € w) € S¥. If (a; : i € w) has a
proper sumsequence, then for each finite coloring of [S]?, there is a
proper sumsequence of {a; : i € w) whose sum graph is

monochromatic.
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Item (2) is formally more general than item (1): {0}, {1}, {2}, is proper
in [w]<«.

Item (2) also follows from item (1): Wlog, (a; : i € w) is proper. Let

¢ : [S]? — k. Define ¥[[w]<“]?> — k by letting

v({F, H}) = ¢o({ap,an}) for F < H.

Corollary

Let (a; : i € w) € W', For each finite coloring of [w]?, there is a proper
sumsequence (b; : i € w) of (a; : i € w) whose sum graph is
monochromatic. a
Hindman's Theorem follows from Milliken-Taylor.

Proposition

Let S be a semigroup, {(a; : i € w) € S¥, and ¢ be a finite coloring of S.
There is a finite coloring 1) of [S)? such that, for each proper
sumsequence (b; : i € w) of (a; : i € w) with v»-monochromatic sum
graph, the set FS{(b; : i € w) is ¢-monochromatic.

Proof.

Let < be some wellorder of F'S{a; : i € w) with o.t. w. Set

PY({s,t}) := d(min{s,t}). Let (b; : i € w) be a proper sumsequence of
(a; : i € w) with ¥-monochromatic sum graph. Given F € [w]<¥, find

i > F such that by < b;. Then ¢(bp) = ¥({br,b;}) is the )-colour of all
pairs in the sum graph of (b; : © € w) and hence does not depend on F. O 6/17



Proof of Milliken-Taylor: auxiliary staff

Let S be a semigroup. For A C S and F C P(S5) let

A*(F):={be S:3C € F(b+C C A)}.

F is idempotent, if A*(F) contains an element of F for any A € F.
Example: Given (a; :i € w) € S¥, F = {FS{a; :i>n) :n €w}isan
idempotent family.

Lemma

For any idempotent F C P(S) there exists an idempotent e € 55
containing F.

Proof.

Enought to see: T := {p € S : F C p} is a closed subsemigroup of 5S.
Closed is clear. Let p,g € T and A € F. Then A*(F) contains an
element of F C p, and hence is in p.

Since F C ¢, A*(F) C A*(q), and therefore A*(¢q) € p. This means
Aep+q. O

Corollary

Let (a; : i € w) € S¥ be a proper sequence. Then thete exists a free
idempotent e € 35 containing {F'S{a; : i > n) : n € w}.
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Theorem (Milliken 1975, Taylor 1976)

Let S be a semigroup, and (a; : i € w) € S¥. If (a; : i € w) has a
proper sumsequence, then for each finite coloring of [S]?, there is a
proper sumsequence of (a; : i € w) whose sum graph is
monochromatic.
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Proof of Milliken-Taylor

Let e D {FS(a; :i > n) :n € w} be idempotent. Wlog,

{a; :i € w) is proper. Fix ¢ : [S]?> — k. For each s € S find

1 =1 € k such that

Ci(s) :={t e S\ {s}:o({s,t}) =i} €e.

Define ¢ : S — k by letting ¢(s) = is. Fix M € e monochromatic
for 1). Assume that the color is green. Then

G(F) :=Nseplt € S\ {s}: {s,t} is green} € e for each

F e [M]<“.

For D € e let
D*:={beD:3Bece(b+BCD)}=D*(e)ND €e.
Observation. Let (D, b, : n € w) be a sequence of pairs in

e x S such that b, € D}, b, + Dyp11 C Dy, and Dy 1 C D,,.
Then by, + -+ 4 by,, € Dy, for any ng < --- < np, in w. O

9/17



By induction on n € w, we'll construct increasing sequences

(F, :n € w) and (m,, : n € w) of elements of [w|<* and w,
respectively, and a decreasing sequence (D,, : i € w) of elements of
e as follows.

Set Dy = M, mg = 0, and pick arbitrary () # Fy € [w]<“ such that
ar, € D;. Possible because F'S(a; : i € w) € e, so we have
“e-many” choices.

At stage n, using ap, , € D) _,, pick B € e such that
ap, , +B C Dy_1, pick my, > F,,_1, set

D, = D,_1NBNG(FS{aF, : i € n}), and pick arbitrary
) # F, € [w\ my,|<¥ such that ap, € D. Possible because

FS{a; : 1> my,) € e, so we have “e-many” choices.

By the construction, (b; = af, : i € w) is a sumsequence of

(ai 11 € w).

Let i < -+ < in < jo < -+ ji, F = {ig,...,in}, and

H = {jo,...,ji}- Computing by from right to left, we see that
by € Djo C D, +1C G(FS{bQ, .. -,bin}) C G(bF) g
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Milliken-Taylor for topological spaces

Intermediate Theorem. Let (X, 7) be a topological space and
f:7U[r]> — k be a finite coloring. Suppose that and U is a
point-infinite open cover of X without finite subcovers. Then there are
mutually disjoint finite subsets Fo, F1, ... of U whose unions V,, :=J F,
have the following properties:

> UneHO Vi # UneH1 V,, for any finite non-empty Hy, H; C w such
that max Hy < min H;

> f{Unem, VosUnem, Va}) is the same for any finite non-empty
Hy, Hi C w such that max Hy < min H;. ]

Proof. Let U = {U,, : n € w} be an open cover of X without finite
subcovers, S := FS(U,, : n € w) with respect to + := U. Wlog

(U, : n € w) is proper: otherwise construct (k, : n € w) € w' and
(T 1 € w) € X¥ such that @, € Uyepp, k1) Uk \ Ugey, Uk and

replace U, with ¢4 ]

nskn+1)
Missing from the theorem we wanted to prove:
» f(U,cq V) is the same for all finite non-empty H C w;

> {V,, :n € w} covers X.
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Combining the proof with a game

Given any G C P(5), consider the following game G(e,G): In the
nth move, | chooses E,, € e (so E,, C S), and Il responds by
choosing s, € E,,. Player Il wins if {s,, : n € w} € G. Otherwise,
player | wins.

Suppose that I has no winning strategy in this game. Then we can
additionally get in the previous proof that {b; = afp, : i € w}, the
proper sumsequence of the initial sequence of elements of S, lies in

g.
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By induction on n € w, we'll construct increasing sequences

(F, :n € w) and (m,, : n € w) of elements of [w|<* and w,
respectively, and a decreasing sequence (D,, : i € w) of elements of
e as follows.

Set Dy = M, mg = 0, and pick arbitrary () # Fy € [w]<“ such that
ap, € Dj. Possible because F'S{a; : i € w) € e, so we have
“e-many” choices.

At stage n, using ap, , € D)_,, pick B € e such that

ap, , +B C Dy_1, pick my, > F,,_1, set

D, = D,_1NBNG(FS{aF, :i € n}), and pick arbitrary
0 # F, € [w\ my]<“ such that ap, € D). Possible because

FS{a; : 1> my,) € e, so we have “e-many” choices.

By the construction, (b; = af, : i € w) is a sumsequence of

(ai 11 € w).

Let ig < -+ < in < jo < -+ ji, F = {ig,...,in}, and

H = {jo,...,ji}- Computing by from right to left, we see that
by € Djo C D +1C G(FS{bQ, .. -,bin}) C G(bF) g
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Milliken-Taylor for topological spaces

Let Y = {U,, : n € w} be an open cover of X without finite
subcovers, S := F'S(U, : n € w) with respect to 4+ := U. Wlog
(Up : n € w) is proper. Assume also that X is Menger.

Goal: Construct an idempotent e € 85 containing
{FS(U,:n>m):m € w} and consisting of open covers of X.

Then we can use the game G(e, G) where G equals O, the
collection of all open subcovers of U, to ensure that the resulting
sequence with monochromatic sumgraph covers X.
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Consider
O,, = {O C S : O contains an increasing cover {O,, : n € w} of
X}. Oy is a coideal. Thus F:= O}! is a filter.

Lemma
F is idempotent.

Proof. To be checked: Given any F € F, we have
FF)={VeS:MecF{VUU:UecU}C F)}cF, ie,
F*(F)NO # ) for any O € Oyy,.

We'll show that F*(F) D F. Indeed, for V € F and O € O,, pick
Woyv e FN (VOU((’) ﬂ]—')) and write it in the form

Wo,v =V UUp. for some Up € ONF. Then
U:={Uo:0€0,}eF =0 witnesses V € F*(F). O



Since {FS(U, : n>m):m € w} and F = O}, are idempotent, so
is their union (for a fixed A, A*(F) grows with F), and hence
there exists an idempotent ultrafilter

e D {FS{U,:n>m):mecw}JF.

Thus e D {FS(Un im>m):m e w} ande=e" CO,,, and
hence e consists of open covers of X. Our goal is achieved, which
completes the proof of Tsaban's theorem.
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The last slide

Thank you for your attention.
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