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Menger spaces and relatives

A topological space X is Menger if for every sequence 〈Un : n ∈ ω〉 of
open covers of X there is a sequence 〈Vn : n ∈ ω〉 such that
Vn ∈ [Un]<ω and {∪Vn : n ∈ ω} is a cover of X.

A topological space X is Hurewicz if for every sequence 〈Un : n ∈ ω〉 of
open covers of X there is a sequence 〈Vn : n ∈ ω〉 such that
Vn ∈ [Un]<ω and {∪Vn : n ∈ ω} is a γ-cover of X.

A topological space X is Scheepers if for every sequence 〈Un : n ∈ ω〉 of
open covers of X there is a sequence 〈Vn : n ∈ ω〉 such that
Vn ∈ [Un]<ω and {∪Vn : n ∈ ω} is a ω-cover of X.

U is an ω-cover of X if ∀F ∈ [X]<ω∃U ∈ U(F ⊂ U).

U is a γ-cover of X if ∀x ∈ X∀∗U ∈ U(x ∈ U).

σ-compact → Hurewicz → Scheepers → Menger → Lindelöf.

Example: ωω is not Menger. Witness:
Un =

{
{x : x(n) = k} : k ∈ ω

}
.

Folklore Fact. For analytic sets of reals Menger is equivalent to
σ-compact.
In L there exists a co-analytic Menger subspace of ωω which is not
σ-compact. 2 / 11



Examples under CH.

X ⊂ ωω is a Luzin set if |X| = ω1 and |X ∩M | ≤ ω for any

meager M . Every Luzin set is Menger because concentrated.

X ⊂ 2ω is a Sierpinski set if |X| = ω1 and |X ∩N | ≤ ω for any

measure 0 set N . Every Sierpinski set is Hurewicz because of the

following characterization due to Scheepers

Theorem
Let P be compact. X ⊂ P is Hurewicz i� for every Gδ-set G ⊃ X
there exists a σ-compact F such that X ⊂ F ⊂ G.

Proof. (→). Let G =
⋂
n∈ω On. Set Un = {U : U ⊂ P is open and

Ū ⊂ On}. Let Vn ∈ [Un]<ω be such that {∪Vn : n ∈ ω} is a
γ-cover of X. Then X ⊂

⋃
n∈ω

⋂
m≥n ∪Vm ⊂ G. 2

Corollary

Luzin sets are not Hurewicz.
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ZFC examples

Given x, y ∈ ωω, x ≤∗ y means {n : x(n) ≤ y(n)} is co�nite. b is the
minimal cardinality of an unbounded subset of ωω. d is the minimal
cardinality of an unbounded subset of ωω.

|X| < b→ X is Hurewicz. b- Sierpinski sets are Hurewicz.
|X| < d→ X is Menger (even Scheepers). d- Luzin sets are Menger.

A set X ⊂ ωω is κ-concentrated on a countable Q, if |X| ≥ κ and
|X \ U | < κ for any open U ⊂ ωω containing Q. If κ ≤ d, then X ∪Q is
Menger.

Fact. There exists a d-concentrate set.

Proof. Fix a dominating {dα : α < d} ⊂ ωω and inductively construct
S = {sα : α < d} ⊂ ω↑ω such that sα 6≤∗ dβ for all β ≤ α. Viewed as a
subspace of (ω + 1)↑ω, S is d-concentrated on Q = {x ∈ (ω + 1)↑ω : x is
eventually ω}. 2

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded B = {bα : α < b} ⊂ ωω such that bβ ≤∗ bα for
all β ≤ α. B is b-concentrated on Q. 2

Nontrivial (Bartoszynski-Shelah): B ∪Q is Hurewicz. �All b-concentrated
sets are Hurewicz� is independent.
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Preservation by unions

Like all reasonable covering properties, Menger, Scheeprs and

Hurewicz ones are preserved by continuous images and closed

subspaces. If X is Menger (Scheepers, Hurewicz) and K is

compact, then so is X ×K.

Fact. Menger and Hurewicz properties are preserved by countable

unions. Hence also by products with σ-compacts.

Proof. Let X =
⋃
k∈ωXk and 〈Un : n ∈ ω〉 be a sequence of open

covers of X. Let 〈Vkn : n ∈ ω〉 be such that Vkn ∈ [Un]<ω and

{∪Vkn : n ∈ ω} is a large (resp. γ-)cover of Xk. Set

Vn =
⋃
k≤n Vkn. 2

Corollary

Menger and Hurewicz properties are preserved by unions of families

of size < b. 2

Proposition

add(Menger) ∈ [min{b, g}, cf(d)] 2.
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Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S0, S1
whose product is not Menger.

Proof. Fix a countable dense Q ⊂ 2ω and write

2ω \Q = {xα : α < ω1}. In the construction of a Sierpinski set by

trans�nite induction at each stage α we can pick a point sα outside

of a given measure zero set Zα ⊂ 2ω. 2ω has a natural structure of

a topological group, and the sum of any two measure 1 sets is the

whole group. Choose s0α, s
1
α ∈ 2ω \ Zα such that s0α + s1α = xα

and siα + {s1−iβ : β < α} ∩Q = ∅. Set Si = {siα : α < ω1}. 2

Problem

I Is it consistent that the product of two metrizable Menger

spaces is Menger?

I Is it consistent that the product of two metrizable Hurewicz

spaces is Hurewicz?

I Is it consistent that the product of two metrizable Hurewicz

spaces is Menger? 6 / 11



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).

Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p 
 U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X �nd py ≤ p and y ∈ Uy ∈ τ such that py 
 Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn : n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.

U̇G ∩M covers X: given x ∈ X, �nd p ∈ Dx ∩H and U ∈ τ ∩M
witnessing this, and note that p ∈ G and p 
 U ∈ U̇ , and hence

x ∈ U ∈ U̇G. 2
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Menger game

Game associated to Menger's property: In the n th move, I chooses an
open cover Un of X , and II responds by choosing Vn ∈ [Un]<ω. Player II
wins if {∪Vn : n ∈ ω} covers X. Otherwise, player I wins. A sequences
〈Un,Vn : n ≤ γ〉 is called a play in the Menger game, where γ ≤ ω.
Theorem (Hurewicz 192?)
X is Menger if and only if I has no winning strategy in the Menger game

on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play
won by II, in which I uses F . Wlog, F instructs I to play with countable
increasing covers. Set F (∅) = U∅ = {U〈n〉 : n ∈ ω} with U〈n〉 ⊂ U〈n+1〉
for all n. Sp-se II responds with U〈n〉. Then we set
F 〈U〈n〉〉 = {U〈n,k〉 : k ∈ ω} and assume wlog U〈n,k〉 ⊂ U〈n,k+1〉 for all k.
In general, given σ = 〈ni : i ≤ m〉 ∈ ωm+1, it gives rise to a play〈

U∅, U〈n0〉; F 〈U〈n0〉〉 =U〈n0〉, U〈n0,n1〉; . . . ,

F
〈
U〈n0〉, . . . , U〈n0,...,nm−1〉

〉
=U〈n0,...nm−1〉, U〈n0,...nm−1,nm〉 = Uσ

〉
in which I uses F , and the next response of I is Uσ = {Uσ ˆ k : k ∈ ω}
with Uσ ˆ k ⊂ Uσ ˆ 〈k+1〉. Wlog, Uσ = Uσ ˆ 0.
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Let On =
{
Onk =

⋂
σ∈ω↑n+1,σ(n)=k Uσ : k ∈ ω

}
. On covers X:

If not, pick x and 〈σk : k ∈ ω〉 ⊂ ω↑(n+1) such that σk(n) = k and

x 6∈ Uσk . Let m = min
{
i : {σk(i) : k ∈ ω} is unbounded

}
. Let

K ∈ [ω]ω be s.t. τ = σk � m is the same for all k ∈ K and

σk0(m) < σk1(m) for all k0 < k1 in K. Then

Uσk�(m+1) = Uτ ˆ σk(m) for all k ∈ K, and so {Uσk�(m+1) : k ∈ K}
covers X, being co�nal in Uτ . But Uσk ⊃ Uσk�(m+1), and hence

{Uσk : k ∈ K} covers X, a contradiction

Let f ∈ ω↑ω be such that
⋃
n∈ω O

n
f(n) = X. Look at the play

〈U∅, U〈f(0)〉; . . . ,Uf�n, Uf�n ˆ f(n)= Uf�(n+1); . . .〉. Since

Uf�(n+1) ⊃ Onf(n), this play is lost by I. 2

A space (X, τ) is called a D-space, if for every f : X → τ such

that x ∈ f(x) for all x, there exists a closed discrete D ⊂ X such

that X =
⋃
x∈D f(x).

Problem
Is every regular Lindelöf space a D-space?
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Menger spaces are D-spaces (Aurichi 2010).

Let f be a neighbourhood assignment. Consider the following

strategy of I in the Menger game on X. U∅ = {f(x) : x ∈ X}.
Suppose that II replies with {f(x) : x ∈ F0} for some F0 ∈ [X]<ω.
Letting U0 =

⋃
{f(x) : x ∈ F0}, I suggests

{U0} ∪ {f(x) : x ∈ X \ U0}. Suppose that II replies with

{U0} ∪ {f(x) : x ∈ F1} for some F1 ∈ [X \ U0]
<ω. Letting

U1 =
⋃
{f(x) : x ∈ F1}, I suggests

{U0, U1} ∪ {f(x) : x ∈ X \ (U0 ∪ U1)}.
Suppose that II replies with {U0, U1} ∪ {f(x) : x ∈ F2} for some

F2 ∈ [X \ (U0 ∪ U1)]
<ω. Letting U2 =

⋃
{f(x) : x ∈ F2}, I

suggests {U0, U1, U2} ∪ {f(x) : x ∈ X \ (U0 ∪ U1 ∪ U2)}, and so

on.

There is a play lost by I, which yields a sequence

〈Un =
⋃
x∈Fn

f(x) : n ∈ ω〉 covering X s.t. Fn+1 ⊂ X \
⋃
i≤n Un.⋃

n∈ω Fn is a closed discrete kernel of f . 2
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The last slide

Thank you for your attention.
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