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Let X be an uncountable Polish space and F a set of functions
f: X—-R

Definition. For f, g € F we say that f < g if for every x € X we
have f(x) < g(x) and there exists an x such that f(z) < g(z).

The general question

Let (L, <r) be an ordering. Does there exist an (order preserving)
embedding (L, <) < (F,<)?

Definition. Suppose that (P, <p) and (Q, <) are posets. We
say that P is embeddable into ), in symbols (P, <p) = (Q, <q)
if there exists a map @ : P — (@ such that for every p,q € P if

p <p q then ®(p) <g @(q).
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Proposition. (Folklore) For a linearly ordered set (L, <r.)
(L, <r) = (C(X,R), <) iff (L, <1.) < ([0, 1], <).

In fact,
(C(X,R), <) 2 ([0,1], <).

Proof.

([0,1], <) — (C(X,R), <): obvious.

(C(X,R),<) < ([0,1], <): the set of closed sets of a Polish space
Y (denoted by TTI9(Y)) forms a poset with the strict inclusion.
The map f — subgraph(f) = {(x,y) : y < f(x)} is an embedding
(C(X,R), <) — (TI¥(X x R), C).
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Known results: Continuous case

Enough:
(I(X x R),C) = ([0,1], <).

Let {U, : n € w} be a basis of X x R.
Map F € TI(X x R) to >p;, npsp 3" L.

Observe that we did not use the continuity, just that the sets
subgraph(f) are closed.

Definition. A function f is called upper semicontinuous (USC) if
subgraph(f) is closed.
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Kuratowski's theorem
Theorem. (Kuratowski, 60s) w; and w] are not embeddable in
(Bl (X)v <)'

Is this a characterisation?
Theorem. (Komjath, 1990) Consistently no: If (S, <) is a Suslin
line, then (S, <) 4 (B1(X), <).
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A non-characterisation result

Theorem. (Elekes, Steprans, 2006) There exists a linear ordering
(L, <) such that neither w; nor w7} is embeddable into L, but
(]L’ <]L) s (Bl(X)ﬂ <)'

The positive direction

Theorem. (Elekes, Steprans, 2006) (MA) If |L| < ¢ and neither w;
nor wj is embeddable into (L, <) then (L, <1) — (B1(X), <).
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Main Theorem. (Elekes, V.) There exists a universal linear
ordering embeddable into the poset of Baire class 1 functions, i. e.,
a linearly ordered set (U, <t7) such that for every linearly ordered
set (L, <r) we have

(L, <p) <= (B1(X), <) iff (L,<1) — (U,<p).
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The universal ordering: ([0, 1], <aier)

We denote the set of strictly monotone decreasing transfinite

sequences of reals in [0, 1] with last element 0 by [0, 1]§”1.

Let T = (za)a<e, T’ = (2,)a<e € [0, 1]i‘”1 be distinct and let § be

minimal such that x5 # z§5. We say that T <gye, ¥ <=
x5 < x5 if 0 is even or x5 > x5 if ¢ is odd.
Main Theorem. (Elekes, V.)
(L, <1) = (Bi(X), <) iff (L, <1.) < ([0, 1] <attten)-

In fact,
(Bl (X)v <) ﬁ ([07 1]iw17 <altle:v)~



About the proof

A characteristic function 4 is Baire class 1 iff A € AJ(X).



About the proof

A characteristic function 4 is Baire class 1 iff A € AJ(X).

(B1(X), <) = ([0, 17, <atttea)

Theorem. (Hausdorff, Kuratowski) For every A € AY there exists
a strictly decreasing transfinite sequence of closed sets (Fjz)z<¢ for
some & < wy such that

A= U (Fy \ Fyg1).

y<&,y is even



About the proof

A characteristic function 4 is Baire class 1 iff A € AJ(X).

(B1(X), <) = ([0, 17, <atttea)

Theorem. (Hausdorff, Kuratowski) For every A € AY there exists
a strictly decreasing transfinite sequence of closed sets (Fjz)z<¢ for
some & < wy such that

A= U (Fy \ Fyg1).

y<&,y is even

([07 1]§w1’ <altlex) — (BI(X)a )
X, X' are o-compact then (B1(X), <)
Enough: ([0 1}\ s <altlex) < (AO( ([07

u
= a
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m Kuratowski: w; and w] are not embeddable.

m Elekes-Steprans: under MA every order of cardinality less then
¢ is embeddable if and only if w; or wi is not embeddable into
it.

m Elekes-Steprans: a special Aronszajn-line is embeddable.

m Komjath: a forcing-free proof of the non-embeddability of
Suslin lines.
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Applications: New results

m The linear orders embeddable into the poset of Baire class 1
functions are the same in all Polish spaces.

m Every linearly ordered set which is embeddable is also
embeddable into the poset of characteristic functions, in fact
(Bi(X), <) = (A(X), ).

m Lexicographical countable products of embeddable linearly
ordered sets are also embeddable.

m Completions of a embeddable linearly ordered sets are not
necessarily embeddable.
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Open problems

Question. What can we say about linear orderings embeddable
into the poset of Baire class « functions if & > 2 in terms of
universal orderings? What if we consider the poset (2% (X), C) for
some o > 27

Problem. Explore the connection between the problem of
Laczkovich and the theory of Rosenthal compacta.

Question. Does there exist an embedding
(B1(X), <) = (AY(X), C) such that (B;(X),<) is (as a poset)
isomorphic to its image?

Question. Does there exist a universal linearly ordered set if X is
only separable metrisable?



Thank you for your attention!



