Ordered sets of Baire class 1 functions

Zoltán Vidnyánszky

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

Winter School in Abstract Analysis 2015

joint work with Márton Elekes
General question

Pointwise ordering

Let \(X \) be an uncountable Polish space and \(\mathcal{F} \) a set of functions \(f : X \to \mathbb{R} \).

Definition.
For \(f, g \in \mathcal{F} \) we say that \(f < g \) if for every \(x \in X \) we have \(f(x) \leq g(x) \) and there exists an \(x \) such that \(f(x) < g(x) \).

The general question

Let \((L, \prec_L)\) be an ordering. Does there exist an (order preserving) embedding \((L, \prec_L), \to (\mathcal{F}, \prec)\)?

Definition.
Suppose that \((P, \prec_P)\) and \((Q, \prec_Q)\) are posets. We say that \(P \) is embeddable into \(Q \), in symbols \((P, \prec_P), \to (Q, \prec_Q)\), if there exists a map \(\Phi : P \to Q \) such that for every \(p, q \in P \) if \(p \prec_P q \) then \(\Phi(p) \prec_Q \Phi(q) \).
General question

Pointwise ordering

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f : X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that $f < g$ if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that $f(x) < g(x)$.
General question

Pointwise ordering
Let X be an uncountable Polish space and \mathcal{F} a set of functions $f : X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that $f < g$ if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that $f(x) < g(x)$.

The general question
Let $(\mathbb{L}, <_{\mathbb{L}})$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{F}, <)$?
General question

Pointwise ordering
Let X be an uncountable Polish space and \mathcal{F} a set of functions $f : X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that $f < g$ if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that $f(x) < g(x)$.

The general question
Let $(\mathbb{L}, <_\mathbb{L})$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <_\mathbb{L}) \hookrightarrow (\mathcal{F}, <)$?

Definition. Suppose that $(P, <_P)$ and $(Q, <_Q)$ are posets. We say that P is **embeddable into** Q, in symbols $(P, <_P) \hookrightarrow (Q, <_Q)$ if there exists a map $\Phi : P \to Q$ such that for every $p, q \in P$ if $p <_P q$ then $\Phi(p) <_Q \Phi(q)$.
Known results: Continuous case

Proposition. (Folklore) For a linearly ordered set \((\mathbb{L}, <_\mathbb{L})\)

\[(\mathbb{L}, <_\mathbb{L}) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (\mathbb{L}, <_\mathbb{L}) \hookrightarrow ([0, 1], <).\]

In fact,

\[(C(X, \mathbb{R}), <) \Leftrightarrow ([0, 1], <).\]
Known results: Continuous case

Proposition. (Folklore) For a linearly ordered set \((L, \leq_L)\)

\[(L, \leq_L) \hookrightarrow (C(X, \mathbb{R}), \leq) \text{ iff } (L, \leq_L) \hookrightarrow ([0, 1], \leq).\]

In fact,

\[(C(X, \mathbb{R}), \leq) \iff ([0, 1], \leq).\]

Proof.

\([0, 1], \leq) \hookrightarrow (C(X, \mathbb{R}), \leq):\text{ obvious.}\]
Known results: Continuous case

Proposition. (Folklore) For a linearly ordered set \((L, <_L)\)

\[(L, <_L) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (L, <_L) \hookrightarrow ([0, 1], <).\]

In fact,

\[(C(X, \mathbb{R}), <) \iff ([0, 1], <).\]

Proof.

\([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <): \text{ obvious.}\)

\((C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <): \text{ the set of closed sets of a Polish space } Y \text{ (denoted by } \Pi^0_1(Y)\text{) forms a poset with the strict inclusion.}\)
Known results: Continuous case

Proposition. (Folklore) For a linearly ordered set \((L, <_L)\)

\[
(L, <_L) \hookrightarrow (C(X, \mathbb{R}), <) \iff (L, <_L) \hookrightarrow ([0, 1], <).
\]

In fact,

\[
(C(X, \mathbb{R}), <) \iff ([0, 1], <).
\]

Proof.

\([0, 1], <) \hookrightarrow (C(X, \mathbb{R}), <): \text{ obvious.}\)

\((C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <): \text{ the set of closed sets of a Polish space } Y \text{ (denoted by } \Pi^0_1(Y)) \text{ forms a poset with the strict inclusion.}\)

The map \(f \mapsto \text{subgraph}(f) = \{(x, y): y \leq f(x)\}\) is an embedding

\((C(X, \mathbb{R}), <) \hookrightarrow (\Pi^0_1(X \times \mathbb{R}), \subset).\)
Known results: Continuous case

Enough:

\[(\Pi_1^0(X \times \mathbb{R}), \subseteq) \hookrightarrow ([0, 1], <)\]

Let \(\{U_n : n \in \omega\}\) be a basis of \(X \times \mathbb{R}\).
Known results: Continuous case

Enough:

\[(\Pi_1^0(X \times \mathbb{R}), \subset) \hookrightarrow ([0, 1], \prec).\]

Let \(\{U_n : n \in \omega\} \) be a basis of \(X \times \mathbb{R} \).

Map \(F \in \Pi_1^0(X \times \mathbb{R}) \) to \(\sum_{U_n \cap F \neq \emptyset} 3^{-n-1} \).

□
Known results: Continuous case

Enough:

\((\Pi_1^0(X \times \mathbb{R}), \subset) \hookrightarrow ([0, 1], <)\).

Let \(\{U_n : n \in \omega\}\) be a basis of \(X \times \mathbb{R}\).

Map \(F \in \Pi_1^0(X \times \mathbb{R})\) to \(\sum_{U_n \cap F \neq \emptyset} 3^{-n-1}\).

Observe that we did not use the continuity, just that the sets subgraph\((f)\) are closed.

Definition. A function \(f\) is called *upper semicontinuous (USC)* if subgraph\((f)\) is closed.
Known results: Higher Baire classes

Borel functions

Theorem. (Komjáth, 1990) The existence of $\omega_2 \rightarrow (\mathcal{B}(X), <)$ is already independent of ZFC.
Known results: Higher Baire classes

Borel functions

Theorem. (Komjáth, 1990) The existence of $\omega_2 \rightarrow (\mathcal{B}(X), <)$ is already independent of ZFC.

Definition. Let $\xi < \omega_1$ and $\mathcal{B}_0(X) = C(X, \mathbb{R})$. A function is called a *Baire class* ξ function (i. e. it is the element of $\mathcal{B}_\xi(X)$) if it is the pointwise limit of functions that are all in Baire classes of indices less than ξ.
Known results: Higher Baire classes

Baire class 2 functions

Theorem. *(Komjáth, 1990)* The existence of \(\omega_2 \rightarrow (\mathcal{B}_2(X), <) \) is already independent of ZFC.

Definition. Let \(\xi < \omega_1 \) and \(\mathcal{B}_0(X) = C(X, \mathbb{R}) \). A function is called a *Baire class* \(\xi \) function (i.e. it is the element of \(\mathcal{B}_\xi(X) \)) if it is the pointwise limit of functions that are all in Baire classes of indices less than \(\xi \).
Known results: Baire class 1

Kuratowski’s theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X), <)$.
Known results: Baire class 1

Kuratowski’s theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X), <)$.

Is this a characterisation?

Theorem. (Komjáth, 1990) Consistently no:
Known results: Baire class 1

Kuratowski’s theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X), <)$.

Is this a characterisation?

Theorem. (Komjáth, 1990) Consistently no: If $(\mathcal{S}, <)$ is a Suslin line, then $(\mathcal{S}, <) \not\subset (\mathcal{B}_1(X), <)$.

Known results: Baire class 1

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <_{\mathbb{L}})$ such that neither ω_1 nor ω^*_1 is embeddable into \mathbb{L}, but $(\mathbb{L}, <_{\mathbb{L}}) \not\rightarrow (B_1(X), <)$.
Known results: Baire class 1

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering \((\mathbb{L}, <_{\mathbb{L}})\) such that neither \(\omega_1\) nor \(\omega_1^*\) is embeddable into \(\mathbb{L}\), but \((\mathbb{L}, <_{\mathbb{L}}) \not\hookrightarrow (\mathcal{B}_1(X), <)\).

The positive direction

Theorem. (Elekes, Steprāns, 2006) (MA) If \(|\mathbb{L}| < c\) and neither \(\omega_1\) nor \(\omega_1^*\) is embeddable into \((\mathbb{L}, <_{\mathbb{L}})\) then \((\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{B}_1(X), <)\).
Main question

Question. (Laczkovich, 70s) Which are the linear orderings embeddable into the poset of Baire class 1 functions?
Main question

Question. (Laczkovich, 70s) Which are the linear orderings embeddable into the poset of Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering embeddable into the poset of Baire class 1 functions, i.e., a linearly ordered set \((U, <_U)\) such that for every linearly ordered set \((\mathbb{L}, <_{\mathbb{L}})\) we have

\[(\mathbb{L}, <_{\mathbb{L}}) \leftrightarrow (\mathcal{B}_1(X), <) \iff (\mathbb{L}, <_{\mathbb{L}}) \leftrightarrow (U, <_U).\]

The universal ordering: \(([0, 1]^{< \omega_1}, <_{altlex}) \)

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in \([0, 1]\) with last element 0 by \([0, 1]^{< \omega_1}\).
The universal ordering: \([0, 1]^{<\omega_1}, <_{\text{altlex}}\)

We denote the set of \textit{strictly} monotone decreasing transfinite sequences of reals in \([0, 1]\) with last element 0 by \([0, 1]^{<\omega_1}\).

Let \(\bar{x} = (x_\alpha)_{\alpha \leq \xi}, \bar{x}' = (x'_\alpha)_{\alpha \leq \xi'} \in [0, 1]^{<\omega_1}\) be distinct and let \(\delta\) be minimal such that \(x_\delta \neq x'_\delta\). We say that \(\bar{x} <_{\text{altlex}} \bar{x}' \iff \)
The universal ordering: \(\langle [0, 1]^{< \omega_1} \rangle, \langle \text{altlex} \rangle \)

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in \([0, 1]\) with last element 0 by \([0, 1]^{< \omega_1}\).

Let \(\bar{x} = (x_\alpha)_{\alpha \leq \xi}, \bar{x}' = (x'_\alpha)_{\alpha \leq \xi'} \in [0, 1]^{< \omega_1}\) be distinct and let \(\delta\) be minimal such that \(x_\delta \neq x'_\delta\). We say that \(\bar{x} < \text{altlex} \bar{x}'\) \iff

\[x_\delta < x'_\delta \text{ if } \delta \text{ is even or } \]

\[x_\delta > x'_\delta \text{ if } \delta \text{ is odd.} \]

Main Theorem. (Elekes, V.)

\(\langle L, < \rangle \rightarrow \langle B_1(X), < \rangle\) iff \(\langle L, < \rangle \rightarrow \langle [0, 1]^{< \omega_1}, < \text{altlex} \rangle\).
The universal ordering: \(([0, 1]^{<\omega_1}, <_{altlex})\)

We denote the set of strictly monotone decreasing transfinite sequences of reals in \([0, 1]\) with last element 0 by \([0, 1]^{<\omega_1}\). Let \(\bar{x} = (x_\alpha)_{\alpha \leq \xi}, \bar{x}' = (x'_\alpha)_{\alpha \leq \xi'} \in [0, 1]^{<\omega_1}\) be distinct and let \(\delta\) be minimal such that \(x_\delta \neq x'_\delta\). We say that \(\bar{x} <_{altlex} \bar{x}' \iff x_\delta < x'_\delta\) if \(\delta\) is even or \(x_\delta > x'_\delta\) if \(\delta\) is odd.

Main Theorem. (Elekes, V.) \([L, <_L] \rightarrow (B_1(X), <)\) iff \([L, <_L] \rightarrow ([0, 1]^{<\omega_1}, <_{altlex})\). In fact, \((B_1(X), <) \rightarrow \rightarrow ([0, 1]^{<\omega_1}, <_{altlex})\).
The universal ordering: \([0, 1]^{<\omega_1}, <_{altlex}\)

We denote the set of strictly monotone decreasing transfinite sequences of reals in \([0, 1]\) with last element 0 by \([0, 1]^{<\omega_1}\).

Let \(\bar{x} = (x_\alpha)_{\alpha \leq \xi}, \bar{x}' = (x'_\alpha)_{\alpha \leq \xi'} \in [0, 1]^{<\omega_1}\) be distinct and let \(\delta\) be minimal such that \(x_\delta \neq x'_\delta\). We say that \(\bar{x} <_{altlex} \bar{x}' \iff \)

\[x_\delta < x'_\delta \text{ if } \delta \text{ is even or } x_\delta > x'_\delta \text{ if } \delta \text{ is odd.} \]

Main Theorem. (Elekes, V.)

\[(\mathbb{L}, <_{\mathbb{L}}) \leftrightarrow (\mathcal{B}_1(X), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \leftrightarrow ([0, 1]^{<\omega_1}, <_{altlex}).\]

In fact,

\[(\mathcal{B}_1(X), <) \Leftrightarrow ([0, 1]^{<\omega_1}, <_{altlex}).\]
About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \Delta^0_2(X)$.
About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \Delta^0_2(X)$.

$(B_1(X), <) \leftrightarrow ([0, 1]^{<\omega_1}, <_{\text{altlex}})$

Theorem. (Hausdorff, Kuratowski) For every $A \in \Delta^0_2$ there exists a strictly decreasing transfinite sequence of closed sets $(F_\beta)_{\beta \leq \xi}$ for some $\xi < \omega_1$ such that

$$A = \bigcup_{\gamma < \xi, \gamma \text{ is even}} (F_\gamma \setminus F_{\gamma + 1}).$$
About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \Delta^0_2(X)$.

$$(B_1(X), <) \leftrightarrow ([0, 1]^{<\omega_1}, <_{altlex})$$

Theorem. (Hausdorff, Kuratowski) For every $A \in \Delta^0_2$ there exists a strictly decreasing transfinite sequence of closed sets $(F_\beta)_{\beta \leq \xi}$ for some $\xi < \omega_1$ such that

$$A = \bigcup_{\gamma < \xi, \gamma \text{ is even}} (F_\gamma \setminus F_{\gamma+1}).$$

$$([0, 1]^{<\omega_1}, <_{altlex}) \leftrightarrow (B_1(X), <)$$

X, X' are σ-compact then $(B_1(X), <) \equiv (B_1(X'), <)$.

Enough: $([0, 1]^{<\omega_1}, <_{altlex}) \leftrightarrow (\Delta^0_2(K([0, 1]^2)), \subset)$.
Applications: New proofs of old results

- Kuratowski: ω_1 and ω_1^* are not embeddable.
Applications: New proofs of old results

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less than \mathfrak{c} is embeddable if and only if ω_1 or ω_1^* is not embeddable into it.
Applications: New proofs of old results

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less than \mathfrak{c} is embeddable if and only if ω_1 or ω_1^* is not embeddable into it.
- Elekes-Steprāns: a special Aronszajn-line is embeddable.
Applications: New proofs of old results

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less then \mathfrak{c} is embeddable if and only if ω_1 or ω_1^* is not embeddable into it.
- Elekes-Steprāns: a special Aronszajn-line is embeddable.
- Komjáth: a forcing-free proof of the non-embeddability of Suslin lines.
Applications: New results

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
Applications: New results

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions,
Applications: New results

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\Delta^0_2(X), \subset)$.

Lexicographical countable products of embeddable linearly ordered sets are also embeddable. Completions of an embeddable linearly ordered set are not necessarily embeddable.
Applications: New results

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.

- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\Delta^0_2(X), \subset)$.

- Lexicographical countable products of embeddable linearly ordered sets are also embeddable.
Applications: New results

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.

- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact \((\mathcal{B}_1(X), <) \hookrightarrow (\Delta^0_2(X), \subset) \).

- Lexicographical countable products of embeddable linearly ordered sets are also embeddable.

- Completions of a embeddable linearly ordered sets are not necessarily embeddable.
Open problems

Question. What can we say about linear orderings embeddable into the poset of Baire class \(\alpha \) functions if \(\alpha \geq 2 \) in terms of universal orderings? What if we consider the poset \((\Sigma^0_\alpha(X), \subset) \) for some \(\alpha \geq 2 \)?
Open problems

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_\alpha(X), \subset)$ for some $\alpha \geq 2$?

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.
Open problems

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_\alpha(X), \subseteq)$ for some $\alpha \geq 2$?

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \leftrightarrow (\Delta^0_2(X), \subseteq)$ such that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?
Open problems

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_\alpha(X), \subset)$ for some $\alpha \geq 2$?

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \hookrightarrow (\Delta^0_2(X), \subset)$ such that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?

Question. Does there exist a universal linearly ordered set if X is only separable metrisable?
Thank you for your attention!