Ordered sets of Baire class 1 functions

Zoltán Vidnyánszky

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

Winter School in Abstract Analysis 2015

joint work with Márton Elekes

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Pointwise ordering

Let X be an uncountable Polish space and $\mathcal F$ a set of functions $f:X\to\mathbb R.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Pointwise ordering

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that f(x) < g(x).

Pointwise ordering

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that f(x) < g(x).

The general question

Let $(\mathbb{L}, <_{\mathbb{L}})$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{F}, <)$?

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Pointwise ordering

Let X be an uncountable Polish space and \mathcal{F} a set of functions $f: X \to \mathbb{R}$.

Definition. For $f, g \in \mathcal{F}$ we say that f < g if for every $x \in X$ we have $f(x) \leq g(x)$ and there exists an x such that f(x) < g(x).

The general question

Let $(\mathbb{L}, <_{\mathbb{L}})$ be an ordering. Does there exist an (order preserving) embedding $(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{F}, <)$?

Definition. Suppose that $(P, <_P)$ and $(Q, <_Q)$ are posets. We say that P is embeddable into Q, in symbols $(P, <_P) \hookrightarrow (Q, <_Q)$ if there exists a map $\Phi : P \to Q$ such that for every $p, q \in P$ if $p <_P q$ then $\Phi(p) <_Q \Phi(q)$.

Proposition. (Folklore) For a linearly ordered set $(\mathbb{L}, <_{\mathbb{L}})$

$$(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow ([0, 1], <).$$

In fact,

$$(C(X,\mathbb{R}),<) \rightleftharpoons ([0,1],<).$$

・ロト・日本・ヨト・ヨト・日・ シック

Proposition. (Folklore) For a linearly ordered set $(\mathbb{L}, <_{\mathbb{L}})$

$$(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow ([0, 1], <).$$

In fact,

$$(C(X,\mathbb{R}),<) \rightleftharpoons ([0,1],<).$$

 $\begin{array}{l} \textit{Proof.} \\ ([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<): \text{ obvious.} \end{array}$

Proposition. (Folklore) For a linearly ordered set $(\mathbb{L}, <_{\mathbb{L}})$

$$(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow ([0, 1], <).$$

In fact,

$$(C(X,\mathbb{R}),<) \rightleftharpoons ([0,1],<).$$

Proof. $([0,1], <) \hookrightarrow (C(X, \mathbb{R}), <)$: obvious. $(C(X, \mathbb{R}), <) \hookrightarrow ([0,1], <)$: the set of closed sets of a Polish space Y (denoted by $\Pi^0_1(Y)$) forms a poset with the strict inclusion.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Proposition. (Folklore) For a linearly ordered set $(\mathbb{L}, <_{\mathbb{L}})$

$$(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (C(X, \mathbb{R}), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow ([0, 1], <).$$

In fact,

$$(C(X,\mathbb{R}),<) \rightleftharpoons ([0,1],<).$$

Proof.

 $([0,1],<) \hookrightarrow (C(X,\mathbb{R}),<)$: obvious.

 $(C(X, \mathbb{R}), <) \hookrightarrow ([0, 1], <)$: the set of closed sets of a Polish space Y (denoted by $\Pi_1^0(Y)$) forms a poset with the strict inclusion.

The map $f \mapsto \text{subgraph}(f) = \{(x, y) : y \leq f(x)\}$ is an embedding $(C(X, \mathbb{R}), <) \hookrightarrow (\mathbf{\Pi}_1^0(X \times \mathbb{R}), \subset).$

Enough:

$$(\mathbf{\Pi}_1^0(X \times \mathbb{R}), \subset) \hookrightarrow ([0, 1], <).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $\{U_n : n \in \omega\}$ be a basis of $X \times \mathbb{R}$.

Enough:

$$(\boldsymbol{\Pi}^0_1(X\times\mathbb{R}),\subset) \hookrightarrow ([0,1],<).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

Let $\{U_n : n \in \omega\}$ be a basis of $X \times \mathbb{R}$. Map $F \in \mathbf{\Pi}_1^0(X \times \mathbb{R})$ to $\sum_{U_n \cap F \neq \emptyset} 3^{-n-1}$.

Observe that we did not use the continuity, just that the sets ${\rm subgraph}(f)$ are closed.

Definition. A function f is called *upper semicontinuous (USC)* if subgraph(f) is closed.

Known results: Higher Baire classes

Borel functions

Theorem. (Komjáth, 1990) The existence of $\omega_2 \hookrightarrow (\mathcal{B}(X), <)$ is already independent of ZFC.

Known results: Higher Baire classes

Borel functions

Theorem. (Komjáth, 1990) The existence of $\omega_2 \hookrightarrow (\mathcal{B}(X), <)$ is already independent of ZFC.

Definition. Let $\xi < \omega_1$ and $\mathcal{B}_0(X) = C(X, \mathbb{R})$. A function is called a *Baire class* ξ function (i. e. it is the element of $\mathcal{B}_{\xi}(X)$) if it is the pointwise limit of functions that are all in Baire classes of indices less than ξ .

Known results: Higher Baire classes

Baire class 2 functions

Theorem. (Komjáth, 1990) The existence of $\omega_2 \hookrightarrow (\mathcal{B}_2(X), <)$ is already independent of ZFC.

Definition. Let $\xi < \omega_1$ and $\mathcal{B}_0(X) = C(X, \mathbb{R})$. A function is called a *Baire class* ξ function (i. e. it is the element of $\mathcal{B}_{\xi}(X)$) if it is the pointwise limit of functions that are all in Baire classes of indices less than ξ .

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X), <)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X), <)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

ls this a characterisation? **Theorem.** (Komjáth, 1990) Consistently no:

Kuratowski's theorem

Theorem. (Kuratowski, 60s) ω_1 and ω_1^* are not embeddable in $(\mathcal{B}_1(X),<).$

Is this a characterisation?

Theorem. (Komjáth, 1990) Consistently no: If $(\mathbb{S}, <)$ is a Suslin line, then $(\mathbb{S}, <) \not\hookrightarrow (\mathcal{B}_1(X), <)$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <_{\mathbb{L}})$ such that neither ω_1 nor ω_1^* is embeddable into \mathbb{L} , but $(\mathbb{L}, <_{\mathbb{L}}) \not\hookrightarrow (\mathcal{B}_1(X), <).$

A non-characterisation result

Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering $(\mathbb{L}, <_{\mathbb{L}})$ such that neither ω_1 nor ω_1^* is embeddable into \mathbb{L} , but $(\mathbb{L}, <_{\mathbb{L}}) \not\hookrightarrow (\mathcal{B}_1(X), <).$

The positive direction

Theorem. (Elekes, Steprāns, 2006) (MA) If $|\mathbb{L}| < \mathfrak{c}$ and neither ω_1 nor ω_1^* is embeddable into $(\mathbb{L}, <_{\mathbb{L}})$ then $(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{B}_1(X), <)$.

Main question

Question. (Laczkovich, 70s) Which are the linear orderings embeddable into the poset of Baire class 1 functions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main question

Question. (Laczkovich, 70s) Which are the linear orderings embeddable into the poset of Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear ordering embeddable into the poset of Baire class 1 functions, i. e., a linearly ordered set $(U, <_U)$ such that for every linearly ordered set $(\mathbb{L}, <_{\mathbb{L}})$ we have

 $(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{B}_1(X), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (U, <_U).$

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{\leq \omega_1}^{<\omega_1}$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{\searrow}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{\searrow}^{<\omega_1}$ be distinct and let δ be minimal such that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0,1] with last element 0 by $[0,1]_{\searrow}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0,1]_{\searrow}^{<\omega_1}$ be distinct and let δ be minimal such that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $x_{\delta} < x_{\delta}'$ if δ is even or

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0,1] with last element 0 by $[0,1]_{\searrow}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0,1]_{\searrow}^{<\omega_1}$ be distinct and let δ be minimal such that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x'_{\delta}$ if δ is even or $x_{\delta} > x'_{\delta}$ if δ is odd.

We denote the set of *strictly* monotone decreasing transfinite sequences of reals in [0, 1] with last element 0 by $[0, 1]_{\searrow}^{<\omega_1}$. Let $\bar{x} = (x_{\alpha})_{\alpha \leq \xi}, \bar{x}' = (x'_{\alpha})_{\alpha \leq \xi'} \in [0, 1]_{\searrow}^{<\omega_1}$ be distinct and let δ be minimal such that $x_{\delta} \neq x'_{\delta}$. We say that $\bar{x} <_{altlex} \bar{x}' \iff$

 $x_{\delta} < x'_{\delta}$ if δ is even or $x_{\delta} > x'_{\delta}$ if δ is odd.

Main Theorem. (Elekes, V.)

$$(\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow (\mathcal{B}_1(X), <) \text{ iff } (\mathbb{L}, <_{\mathbb{L}}) \hookrightarrow ([0, 1]_{\searrow}^{<\omega_1}, <_{altlex}).$$

In fact,

$$(\mathcal{B}_1(X), <) \rightleftharpoons ([0, 1]_{\searrow}^{<\omega_1}, <_{altlex}).$$

About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \mathbf{\Delta}_2^0(X)$.

About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \mathbf{\Delta}_2^0(X)$.

 $(\mathcal{B}_1(X), <) \hookrightarrow ([0, 1]_{\searrow}^{<\omega_1}, <_{altlex})$

Theorem. (Hausdorff, Kuratowski) For every $A \in \mathbf{\Delta}_2^0$ there exists a strictly decreasing transfinite sequence of closed sets $(F_\beta)_{\beta \leq \xi}$ for some $\xi < \omega_1$ such that

$$A = \bigcup_{\gamma < \xi, \gamma \text{ is even}} (F_{\gamma} \setminus F_{\gamma+1}).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

About the proof

A characteristic function χ_A is Baire class 1 iff $A \in \mathbf{\Delta}_2^0(X)$.

 $(\mathcal{B}_1(X), <) \hookrightarrow ([0, 1]^{<\omega_1}_{\searrow}, <_{altlex})$

Theorem. (Hausdorff, Kuratowski) For every $A \in \mathbf{\Delta}_2^0$ there exists a strictly decreasing transfinite sequence of closed sets $(F_\beta)_{\beta \leq \xi}$ for some $\xi < \omega_1$ such that

$$A = \bigcup_{\gamma < \xi, \gamma \text{ is even}} (F_{\gamma} \setminus F_{\gamma+1}).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

$$\begin{split} &([0,1]_{\searrow}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathcal{B}_1(X), <) \\ &X, X' \text{ are } \sigma\text{-compact then } (\mathcal{B}_1(X), <) \rightleftharpoons (\mathcal{B}_1(X'), <). \\ &\text{Enough: } ([0,1]_{\searrow}^{<\omega_1}, <_{altlex}) \hookrightarrow (\mathbf{\Delta}_2^0(\mathcal{K}([0,1]^2)), \subset). \end{split}$$

• Kuratowski: ω_1 and ω_1^* are not embeddable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less then c is embeddable if and only if ω₁ or ω₁^{*} is not embeddable into it.

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less then c is embeddable if and only if ω₁ or ω₁^{*} is not embeddable into it.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

Elekes-Steprāns: a special Aronszajn-line is embeddable.

- Kuratowski: ω_1 and ω_1^* are not embeddable.
- Elekes-Steprāns: under MA every order of cardinality less then c is embeddable if and only if ω₁ or ω₁^{*} is not embeddable into it.
- Elekes-Steprāns: a special Aronszajn-line is embeddable.
- Komjáth: a forcing-free proof of the non-embeddability of Suslin lines.

• The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.

• The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

 Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions,

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$
- Lexicographical countable products of embeddable linearly ordered sets are also embeddable.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- The linear orders embeddable into the poset of Baire class 1 functions are the same in all Polish spaces.
- Every linearly ordered set which is embeddable is also embeddable into the poset of characteristic functions, in fact $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset).$
- Lexicographical countable products of embeddable linearly ordered sets are also embeddable.
- Completions of a embeddable linearly ordered sets are not necessarily embeddable.

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_{\alpha}(X), \subset)$ for some $\alpha \geq 2$?

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_{\alpha}(X), \subset)$ for some $\alpha \geq 2$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_{\alpha}(X), \subset)$ for some $\alpha \geq 2$?

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset)$ such that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?

Question. What can we say about linear orderings embeddable into the poset of Baire class α functions if $\alpha \geq 2$ in terms of universal orderings? What if we consider the poset $(\Sigma^0_{\alpha}(X), \subset)$ for some $\alpha \geq 2$?

Problem. Explore the connection between the problem of Laczkovich and the theory of Rosenthal compacta.

Question. Does there exist an embedding $(\mathcal{B}_1(X), <) \hookrightarrow (\mathbf{\Delta}_2^0(X), \subset)$ such that $(\mathcal{B}_1(X), <)$ is (as a poset) isomorphic to its image?

Question. Does there exist a universal linearly ordered set if X is only separable metrisable?

Thank you for your attention!

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ