Remainders of topological groups and ultrafilters

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic, Universität Wien
http://www.logic.univie.ac.at/~lzdomsky

Joint work with Angelo Bella and Seçil Tokgöz

Winter School in Abstract Analysis 2015
Hejnice, 6.02.2015
We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of \mathbb{R}.

Question: What could be said about remainders? I.e., do they have some special interesting properties?
Remainders.

We shall consider only Tychonoff spaces, i.e., spaces embeddable into a power of \mathbb{R}.
A space Y is a remainder of X, if there exists a compactification bX of X such that $Y = bX \setminus X$.
We shall consider only Tychonoff spaces, i.e., spaces embeddable into a power of \mathbb{R}.

A space Y is a *remainder* of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.
Remainders.

We shall consider only Tuchonoff spaces, i.e., spaces embeddable into a power of \mathbb{R}.
A space Y is a remainder of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.

Question

What could be said about remainders? I.e., do they have some special interesting properties?
Remainders.

We shall consider only Tychonoff spaces, i.e., spaces embeddable into a power of \mathbb{R}.

A space Y is a remainder of X, if there exists a compactification bX of X such that $Y = bX \setminus X$. We consider remainders only of nowhere locally compact spaces.

Question

What could be said about remainders? I.e., do they have some special interesting properties?
Remainders of nice spaces.

Question

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups?
Remainders of nice spaces.

Question

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups?

Theorem (Arhangel’skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.
Remainders of nice spaces.

Question

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups?

Theorem (Arhangel’skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.

Theorem (Arhangel’skii 2008)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either σ-compact or Baire.
Question

What could be said about remainders of nice spaces? E.g., what kind of properties could have remainders of topological groups?

Theorem (Arhangel’skii 2009)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either Lindelöf or pseudocompact.

Theorem (Arhangel’skii 2008)

Let G be a topological group and bG a compactification of G. If $Y = bG \setminus G$, then Y is either σ-compact or Baire.

Note that these theorems are dichotomies.
A Lindelöf topological space X is called
- *Hurewicz,*
- *Scheepers,*
- *Menger,*

If X is zero-dimensional, then it is enough to consider functions into ω^ω.

σ-compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger \Rightarrow Lindelöf.
A Lindelöf topological space X is called
- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}^\omega$, the range $f[X]$ is bounded;
- **Scheepers**, if for any continuous $f : X \to \mathbb{R}^\omega$, the collection $\{\max A : A \in f[X]\} < \omega$ is not dominating;
- **Menger**, if for any continuous $f : X \to \mathbb{R}^\omega$, the range $f[X]$ is not dominating.

If X is zero-dimensional, then it is enough to consider functions into ω^ω.

σ-compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger \Rightarrow Lindelöf.
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}_{+}$, the range $f[X]$ is bounded;
- **Scheepers**, if for any continuous $f : X \to \mathbb{R}_{+}$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\text{max} A : A \in f[X]\} < \omega$ is not dominating);
- **Menger**, if for any continuous $f : X \to \mathbb{R}_{+}$, the range $f[X]$ is not dominating.

If X is zero-dimensional, then it is enough to consider functions into \mathbb{R}_{ω}.

σ-compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger \Rightarrow Lindelöf.
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \rightarrow \mathbb{R}^\omega_+$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \rightarrow \mathbb{R}^\omega_+$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\max A : A \in [f[X]]^{<\omega}\}$ is not dominating);
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}^\omega_+$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \to \mathbb{R}^\omega_+$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\max A : A \in [f[X]]^{<\omega}\}$ is not dominating);

- **Menger**,
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}^\omega$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \to \mathbb{R}^\omega$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\max A : A \in [f[X]]^{<\omega}\}$ is not dominating);

- **Menger**, if for any continuous $f : X \to \mathbb{R}^\omega$, the range $f[X]$ is not dominating.
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}_+\omega$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \to \mathbb{R}_+\omega$, the range $f[X]$ is not finitely dominating (i.e., the collection \(\{\max A : A \in [f[X]]^{<\omega}\}\) is not dominating);

- **Menger**, if for any continuous $f : X \to \mathbb{R}_+\omega$, the range $f[X]$ is not dominating.

\[\square\]
Between σ-compact and Lindelöf: combinatorial properties

A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}_+^\omega$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \to \mathbb{R}_+^\omega$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\max A : A \in [f[X]]^{<\omega}\}$ is not dominating);

- **Menger**, if for any continuous $f : X \to \mathbb{R}_+^\omega$, the range $f[X]$ is not dominating.

If X is zero-dimensional, then it is enough to consider functions into ω^ω. \qed
A Lindelöf topological space X is called

- **Hurewicz**, if for any continuous $f : X \to \mathbb{R}^\omega_+$, the range $f[X]$ is bounded;

- **Scheepers**, if for any continuous $f : X \to \mathbb{R}^\omega_+$, the range $f[X]$ is not finitely dominating (i.e., the collection $\{\max A : A \in [f[X]]^{<\omega}\}$ is not dominating);

- **Menger**, if for any continuous $f : X \to \mathbb{R}^\omega_+$, the range $f[X]$ is not dominating.

If X is zero-dimensional, then it is enough to consider functions into ω^ω.

σ-compact \Rightarrow Hurewicz \Rightarrow Scheepers \Rightarrow Menger \Rightarrow Lindelöf.
Theorem

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ-compact.
Theorem

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ-compact.

Proof. On the blackboard for groups G having dense σ-compact subsets, using the following characterization:
Theorem

Let G be a topological group. If $\beta G \setminus G$ is Hurewicz, then it is σ-compact.

Proof. On the blackboard for groups G having dense σ-compact subsets, using the following characterization:

A space X is Hurewicz iff for any Čech-complete Z containing X as a dense subspace, there exists a σ-compact F such that $X \subset F \subset Z$. □.
The Scheepers property

Do the properties of Scheepers and Menger also imply being σ-compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact if there exists a Scheepers ultrafilter U on ω.

Proof. Let U^* be the dual ideal. (U^*, Δ) is a topological group and $U^* \cup U = \mathcal{P}(\omega)$.

Theorem (Canjar 1988)

If $d = c$, then there exists an ultrafilter U such that the Mathias forcing M_U associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter U on ω, the Mathias forcing M_U associated to it does not add dominating reals if U is Scheepers if U is Menger.
The Scheepers property

Do the properties of Scheepers and Menger also imply being σ-compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact if there exists a Scheepers ultrafilter \mathcal{U} on ω.

Proof. Let U^* be the dual ideal. (U^*, Δ) is a topological group and $U^* \cup U = P(\omega)^2$.

Theorem (Canjar 1988)

If $d = c$, then there exists an ultrafilter U such that the Mathias forcing M_U associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter U on ω, the Mathias forcing M_U associated to it does not add dominating reals if U is Scheepers if U is Menger.
The Scheepers property

Do the properties of Scheepers and Menger also imply being \(\sigma \)-compact for remainders of topological groups?

Observation

There exists a topological group \(G \) such that \(\beta G \setminus G \) is Scheepers and not \(\sigma \)-compact if there exists a Scheepers ultrafilter \(\mathcal{U} \) on \(\omega \).

Proof. Let \(\mathcal{U}^* \) be the dual ideal.
The Scheepers property

Do the properties of Scheepers and Menger also imply being σ-compact for remainders of topological groups?

Observation
There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact if there exists a Scheepers ultrafilter \mathcal{U} on ω.

Proof. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \cup \mathcal{U}^* = \mathcal{P}(\omega)$. □
The Scheepers property

Do the properties of Scheepers and Menger also imply being \(\sigma\)-compact for remainders of topological groups?

Observation

There exists a topological group \(G\) such that \(\beta G \setminus G\) is Scheepers and not \(\sigma\)-compact if there exists a Scheepers ultrafilter \(U\) on \(\omega\).

Proof. Let \(U^*\) be the dual ideal. \((U^*, \Delta)\) is a topological group and \(U \cup U^* = \mathcal{P}(\omega)\). \(\square\)

Theorem (Canjar 1988)

If \(\mathfrak{d} = \mathfrak{c}\), then there exists an ultrafilter \(U\) such that the Mathias forcing \(\mathbb{M}_U\) associated to it does not add dominating reals.
The Scheepers property

Do the properties of Scheepers and Menger also imply being \(\sigma\)-compact for remainders of topological groups?

Observation

There exists a topological group \(G\) such that \(\beta G \setminus G\) is Scheepers and not \(\sigma\)-compact if there exists a Scheepers ultrafilter \(\mathcal{U}\) on \(\omega\).

Proof. Let \(\mathcal{U}^*\) be the dual ideal. \((\mathcal{U}^*, \Delta)\) is a topological group and \(\mathcal{U} \cup \mathcal{U}^* = \mathcal{P}(\omega)\).

Theorem (Canjar 1988)

If \(\mathfrak{d} = \mathfrak{c}\), then there exists an ultrafilter \(\mathcal{U}\) such that the Mathias forcing \(\mathbb{M}_\mathcal{U}\) associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \(\mathcal{U}\) on \(\omega\), the Mathias forcing \(\mathbb{M}_\mathcal{U}\) associated to it does not add dominating reals iff \(\mathcal{U}\) is Scheepers
The Scheepers property

Do the properties of Scheepers and Menger also imply being σ-compact for remainders of topological groups?

Observation

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact if there exists a Scheepers ultrafilter \mathcal{U} on ω.

Proof. Let \mathcal{U}^* be the dual ideal. (\mathcal{U}^*, Δ) is a topological group and $\mathcal{U} \cup \mathcal{U}^* = \mathcal{P}(\omega)$. \hfill \Box

Theorem (Canjar 1988)

If $\mathfrak{d} = \mathfrak{c}$, then there exists an ultrafilter \mathcal{U} such that the Mathias forcing $\mathbb{M}_\mathcal{U}$ associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \mathcal{U} on ω, the Mathias forcing $\mathbb{M}_\mathcal{U}$ associated to it does not add dominating reals iff \mathcal{U} is Scheepers iff \mathcal{U} is Menger.
The Scheepers property

Do the properties of Scheepers and Menger also imply being \(\sigma \)-compact for remainders of topological groups?

Observation

There exists a topological group \(G \) such that \(\beta G \setminus G \) is Scheepers and not \(\sigma \)-compact if there exists a Scheepers ultrafilter \(\mathcal{U} \) on \(\omega \).

Proof. Let \(\mathcal{U}^* \) be the dual ideal. \((\mathcal{U}^*, \Delta) \) is a topological group and \(\mathcal{U} \cup \mathcal{U}^* = \mathcal{P}(\omega) \).

Theorem (Canjar 1988)

If \(d = c \), then there exists an ultrafilter \(\mathcal{U} \) such that the Mathias forcing \(\mathbb{M}_\mathcal{U} \) associated to it does not add dominating reals.

Theorem (Chodounsky-Repovs-Z. 2014)

For an ultrafilter \(\mathcal{U} \) on \(\omega \), the Mathias forcing \(\mathbb{M}_\mathcal{U} \) associated to it does not add dominating reals iff \(\mathcal{U} \) is Scheepers iff \(\mathcal{U} \) is Menger.
Corollary

If $\mathfrak{c} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact.
Corollary

If \(\mathfrak{d} = \mathfrak{c} \), then there exists a topological group \(G \) such that \(\beta G \setminus G \) is Scheepers and not \(\sigma \)-compact.
Corollary

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact.

Theorem

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact iff there exists a Scheepers ultrafilter \mathcal{U} on ω.
Corollary

If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact.

Theorem

There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact iff there exists a Scheepers ultrafilter \mathcal{U} on ω.

Observation

Every Scheepers (equiv. Menger ultrafilter) is a P-point.
Corollary
If $\mathfrak{d} = \mathfrak{c}$, then there exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact.

Theorem
There exists a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact iff there exists a Scheepers ultrafilter \mathcal{U} on ω.

Observation
Every Scheepers (equiv. Menger ultrafilter) is a P-point.

Corollary
The existence of a topological group G such that $\beta G \setminus G$ is Scheepers and not σ-compact is independent from ZFC.
The Menger property

Theorem

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ-compact.

☐
The Menger property

Theorem

It is consistent that for any topological group \(G \) and compactification \(bG \), if \((bG \setminus G)^2\) is Menger, then it is \(\sigma \)-compact.

\(\square \)

The proof uses the following forcing:
The Menger property

Theorem
It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ-compact.

The proof uses the following forcing:
For a semifilter \mathcal{F} we denote by $\mathbb{P}_\mathcal{F}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n, k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}$.
The Menger property

Theorem

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ-compact.

The proof uses the following forcing:

For a semifilter \mathcal{F} we denote by $\mathbb{P}_\mathcal{F}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n, k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}$.

If, moreover, we assume that and $\text{dom}(p_n) \subset \text{dom}(p_{n+1})$ for all n, the corresponding poset will be denoted by $\mathbb{P}^*_\mathcal{F}$.
Theorem

It is consistent that for any topological group G and compactification bG, if $(bG \setminus G)^2$ is Menger, then it is σ-compact.

The proof uses the following forcing:

For a semifilter \mathcal{F} we denote by $\mathbb{P}_\mathcal{F}$ the poset consisting of all partial maps p from $\omega \times \omega$ to 2 such that for every $n \in \omega$ the domain of $p_n : k \mapsto p(n, k)$ is an element of $\sim \mathcal{F} := \{\omega \setminus F : F \in \mathcal{F}\}$.

If, moreover, we assume that and $\text{dom}(p_n) \subset \text{dom}(p_{n+1})$ for all n, the corresponding poset will be denoted by $\mathbb{P}_\mathcal{F}^*$.

A condition q is stronger than p (in this case we write $q \leq p$) if $p \subset q$.
The poset, continued

For filters F for the poset P, P^F is obviously dense in P, and the latter is well-known to be proper and ω-bounding if F is a non-meager P-filter.

$F^+ = \{ X \subset \omega : \forall F \in F (X \cap F \neq \emptyset) \}$

Lemma. If F^+ is a Menger semilter, then both P^F and P^*F are proper and ω_ω-bounding.

Example. $F = [\omega]$ ω. Then F^+ is the Frechet filter $\{ \omega \setminus A : A \in [\omega]^{<\omega} \}$, hence Menger (even countable). Then P^F is proper and ω_ω-bounding.

Note that it is the full support product of countably many Silver forcings.
For filters \mathcal{F} the poset $\mathbb{P}^*_\mathcal{F}$ is obviously dense in $\mathbb{P}_\mathcal{F}$, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.
For filters \mathcal{F} the poset \mathbb{P}^*_F is obviously dense in \mathbb{P}_F, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.

$\mathcal{F}^+ = \{X \subset \omega : \forall F \in \mathcal{F} (X \cap F \neq \emptyset)\}$

Lemma

If $F^+ \mathcal{F}$ is a Menger semilter, then both \mathbb{P}^*_F and \mathbb{P}^ω_F are proper and ω^ω-bounding.
For filters \mathcal{F} the poset $\mathbb{P}_\mathcal{F}^*$ is obviously dense in $\mathbb{P}_\mathcal{F}$, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.

$\mathcal{F}^+ = \{X \subset \omega : \forall F \in \mathcal{F} (X \cap F \neq \emptyset)\}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}_\mathcal{F}^$ are proper and ω^ω-bounding.*
The poset, continued

For filters \mathcal{F} the poset $\mathbb{P}^*_\mathcal{F}$ is obviously dense in $\mathbb{P}_\mathcal{F}$, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.

$\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

*If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}^*_\mathcal{F}$ are proper and ω^ω-bounding.*

Example. $\mathcal{F} = [\omega]^{<\omega}$. Then \mathcal{F}^+ is the Frechét filter

$\{ \omega \setminus A : A \in [\omega]^{<\omega} \}$, hence Menger (even countable).
For filters \mathcal{F} the poset $\mathbb{P}_\mathcal{F}^*$ is obviously dense in $\mathbb{P}_\mathcal{F}$, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.

$\mathcal{F}^+ = \{ X \subseteq \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}_\mathcal{F}^*$ are proper and ω^ω-bounding.

Example. $\mathcal{F} = [\omega]^\omega$. Then \mathcal{F}^+ is the Frechét filter $\{ \omega \setminus A : A \in [\omega]^{<\omega} \}$, hence Menger (even countable). Then $\mathbb{P}_\mathcal{F}$ is proper and ω^ω-bounding.
For filters \mathcal{F} the poset $\mathbb{P}^*_\mathcal{F}$ is obviously dense in $\mathbb{P}_\mathcal{F}$, and the latter is well-known to be proper and ω^ω-bounding if \mathcal{F} is a non-meager P-filter.

$\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} (X \cap F \neq \emptyset) \}$

Lemma

If \mathcal{F}^+ *is a Menger semifilter, then both* $\mathbb{P}_\mathcal{F}$ *and* $\mathbb{P}^*_\mathcal{F}$ *are proper and* ω^ω*-bounding.*

Example. $\mathcal{F} = [\omega]^{<\omega}$. Then \mathcal{F}^+ is the Frechét filter $\{ \omega \setminus A : A \in [\omega]^{<\omega} \}$, hence Menger (even countable). Then $\mathbb{P}_\mathcal{F}$ is proper and ω^ω-bounding. Note that it is the full support product of countably many Silver forcings.
The poset, continued

For filters \(\mathcal{F} \) the poset \(\mathbb{P}^*_\mathcal{F} \) is obviously dense in \(\mathbb{P}_\mathcal{F} \), and the latter is well-known to be proper and \(\omega^\omega \)-bounding if \(\mathcal{F} \) is a non-meager \(P \)-filter.

\[\mathcal{F}^+ = \{ X \subset \omega : \forall F \in \mathcal{F} \ (X \cap F \neq \emptyset) \} \]

Lemma

If \(\mathcal{F}^+ \) is a Menger semifilter, then both \(\mathbb{P}_\mathcal{F} \) and \(\mathbb{P}^*_\mathcal{F} \) are proper and \(\omega^\omega \)-bounding.

Example. \(\mathcal{F} = [\omega]^{\omega} \). Then \(\mathcal{F}^+ \) is the Frechét filter \(\{ \omega \setminus A : A \in [\omega]^{<\omega} \} \), hence Menger (even countable). Then \(\mathbb{P}_\mathcal{F} \) is proper and \(\omega^\omega \)-bounding. Note that it is the full support product of countably many Silver forcings.
Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}^*_\mathcal{F}$ are proper and ω^ω-bounding. \qed
Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}_\mathcal{F}^*$ are proper and ω_ω-bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for “nice semifilters”:
Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}^*_\mathcal{F}$ are proper and ω^ω-bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for “nice semifilters”:

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{< \omega}$, i.e., $\mathbb{P}_\mathcal{F}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_\mathcal{F}$ collapses $(2^\omega)^V$ to ω.

Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}_\mathcal{F}^*$ are proper and ω^ω-bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for “nice semifilters”:

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]<\omega$, i.e., $\mathbb{P}_\mathcal{F}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_\mathcal{F}$ collapses $(2^\omega)^V$ to ω.

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.
Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_\mathcal{F}$ and $\mathbb{P}_\mathcal{F}^*$ are proper and ω^ω-bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for “nice semifilters”:

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{< \omega}$, i.e., $\mathbb{P}_\mathcal{F}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_\mathcal{F}$ collapses $(2^\omega)^V$ to ω.

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.
Lemma

If \mathcal{F}^+ is a Menger semifilter, then both $\mathbb{P}_{\mathcal{F}}$ and $\mathbb{P}^*_{\mathcal{F}}$ are proper and ω^ω-bounding.

The requirement that \mathcal{F}^+ is Menger cannot be dropped, even for "nice semifilters":

If \mathcal{F} is the Frechét filter, hence $\sim \mathcal{F} = [\omega]^{<\omega}$, i.e., $\mathbb{P}_{\mathcal{F}}$ is the countably supported product of the Cohen forcing, and therefore $\mathbb{P}_{\mathcal{F}}$ collapses $(2^\omega)^V$ to ω.

Note that in this case $\mathcal{F}^+ = [\omega]^\omega$ and hence is not Menger.
Questions

Question

Is there a ZFC example of a topological group with a Menger non-σ-compact remainder?
Question

Is there a ZFC example of a topological group with a Menger non-σ-compact remainder?

Question

Is it consistent that there exists a topological group G such that $\beta G \setminus G$ is Menger and not Scheepers? Does CH imply the existence of such a group?
Questions

Question

Is there a ZFC example of a topological group with a Menger non-\(\sigma\)-compact remainder?

Question

Is it consistent that there exists a topological group \(G\) such that \(\beta G \setminus G\) is Menger and not Scheepers? Does CH imply the existence of such a group?

Question

Suppose that \(\beta(C_p(X)) \setminus C_p(X)\) is Menger. Is it then \(\sigma\)-compact?
Question

Is there a ZFC example of a topological group with a Menger non-\(\sigma\)-compact remainder?

Question

Is it consistent that there exists a topological group \(G\) such that \(\beta G \setminus G\) is Menger and not Scheepers? Does CH imply the existence of such a group?

Question

Suppose that \(\beta(C_p(X)) \setminus C_p(X)\) is Menger. Is it then \(\sigma\)-compact? Equivalently, is \(X\) countable discrete?
Thank you for your attention.