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Todorcevic's axioms on fragments of MAy,

Definition (Martin-Solovay). MAy, : VP ccc
V{Dq; a € w1} dense subsets of P
3G CP filter s.t. DoNG # () for each o € wq.

Definition (Todorcevi€). K, : every ccc forcing P has precaliber X1, i.e.

VI e [P
31’ € [I1®1 such that any finite subset of I’ has a common extension in P.

For each n € w, IC,, : every ccc forcing P has property K, i.e.

VI e [P
31’ € [I1®1 n-linked, i.e. any subset of I' of sizen has a common extension in P .

C2 : VP cccVQ ccc, Px Q also ccc.



Todorcevic's axioms on fragments of MAy,

Definition (Todorcevic€). A partition Ko U K1 = [w1]<Y0 (or [w1]™) is ccc if
[w1]t C Ko (or ignore it when [w1]") and the forcing P,

-

Pk, := the set of finite Kg-homogeneous subsets of wy, gPKO::D

has the ccc.

K., : V¥ ccc partition [w1]<N0 = KgU K1
JH € [w1]®¥ such that [H]<®o C K.

Foreachn € w, K/, : V ccc partition [w1]" = Ko U K3
JH € [w1]N1 such that [H]" C K.



Todorcevic's axioms on fragments of MAy,

Theorem (Todorcevic).
C2 = Suslin’s Hypothesis,

every (w1,w1)-gap is indestructible,
b > Njp.

Ko = K5 = every Aronszajn tree is special,
every (w1,wq1)-gap is indestructible,
b > Ny.

Kz = K5 = (2¥1,<ex) is embedded in w*/U for every nontrivial U,
add(\) > Ry,

Ka = K, = every ladder system on wy can be uniformized,
every uncountable set of reals is a (Q-set.



Todorcevic's axioms on fragments of MAy,

Theorem (TodorcCevic-Velickovic).

K<w—+---—+Kn+1—+Kn—+---—+K2—+C2

/

MAy.

N

/ / / /
Kly— -+ —Kh 1—Kp— - —K,




Todorcevic's axioms on fragments of MAy,

Theorem (TodorcCevic-Velickovic).

Kew—  —Kpr1—Kn— - - Ky—C?

MANl\
Kl o KKy - K

Question (TodorcCevic). Are there other implications in the above diagram?



Todorcevic's axioms on fragments of MAy,

Theorem (TodorcCevic-Velickovic).

Kew—  —Kpgp1—Kn— -+ —Ko—C?

MANl\
Kl o KKy - K

Question (TodorcCevic). Are there other implications in the above diagram?

Question. For a subclass P of ccc forcings, what about the diagram:

K<w(P) - Kpr1(P) Kn(P) -+  Ko(P) C2(P)
MAx, (P)

Klo(P) o Ky (P) KL(P) - KA(P)



The property Ry n,

Definition (Y.). A partition [w1]? = KqgU K7 has the property R1w, if for any large
enough reqgular cardinal k,

V countable N < H(k) with Ko € N

VI € [w1]¥1N N

Va € wy \ N

3I' € [I1N1 N N such that V8 € I',{o, B} € Kp.

Note that a partition on [w1]? is ccc whenever it satisfies the property Rl,Nl.
Example. For an Aronszajn tree T, define

Kp = {{s,t} e[T)?:s Ly t}, Kq = [T]?\ Ko.
Then the partition [T]2 = Ko U K3 has the property Ry y,-

Let countable N < H(Xp) with T € N, t e T\ N and I € [T]® N N.
Find sg,s1 € TNN s.t. both{u el :sqg<pu}and{uel: sy <pu} areuncountable.
{uel:sg<pu} or{uel:sy <pu} works well.



The property Rl,Nl

Definition (Y.). A partition [w1]? = KqgU K7 has the property R1x, if for any large
enough reqgular cardinal k,

V countable N < H(k) with Ko € N

VI € [w1]¥1N N

Va € wy \ N

3I' € [I1N1 N N such that V8 € I',{o, B} € Kp.

Example. IC’Q(RLNl) = Suslin’s Hypothesis,
every (w1,wq)-gap is indestructible,
b > Nq.



The property Ry n,

Definition (Y.). A forcing notion P has the property Ry y, If
o P C [w1]<®o uncountable and <p=D2, and

e for any large enough regular cardinal k,

YV countable N < H(k) with P € N

VI € [IP’]Nl N N which forms a A-system with root v
Vo e P\ N withoc NN =v

31" € [[IN1 NN such thatVvreI',o fp .

Example. e For any Ry y, partition [w1] = KoU K1, the forcing P,

Pk, := the set of finite Ko-homogeneous subsets of wy, ngo:zg,

satisfies the property Ry ;-

o MAyx,(R1x;) = K<w(Ryx,) and every Aronszajn tree is special.



The property Rl,Nl

Theorem (Shelah). It is consistent that there exists a non-special Aronszajn tree
and Suslin’s Hypothesis holds.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and
K<w(R1 r,) holds.

Therefore MAy, (Ry x,) and K<w(Ry n,) are different.



The property Ry n,

Theorem (Shelah). It is consistent that there exists a non-special Aronszajn tree
and Suslin’s Hypothesis holds.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and
K<w(R1 r,) holds.

Therefore MAy, (Ry x,) and K<w(Ry n,) are different.

Remember:
Theorem (TodorCevic-VeliCkovic). MAy, & K<w.



TodorcCeviC orderings

Definition (Todorcevic¢, Balcar-Pazak-Thimmel). For a topological space X, T(X)
is the set of all subsets of X which are unions of finitely many convergent sequences
including the/r limit points, and for each p and q in T(X), q <1(x) P iff g O p and

¢’ np=p?.
Theorem (TodorcCevic). e T(R) is a non-o-linked ccc forcing.

e Ifb =Nq, T(R) doesn’t have property K.

Theorem (Balcar-Pazak-Thiummel). It is consistent that there exists a topological
space X such that T(X) is not ccc.

Theorem (Thimmel). T(( g O“"l <|ex>) satisfies the o-finite cc, but doesn'’t

acwiq
satisfies the o-bounded cc.



TodorcCeviC orderings

Definition (Todorcevic¢, Balcar-Pazak-Thimmel). For a topological space X, T(X)
is the set of all subsets of X which are unions of finitely many convergent sequences
including the/r limit points, and for each p and q in T(X), q <1(x) P iff g O p and

¢’ np=p?.
Theorem (TodorcCevic). e T(R) is a non-o-linked ccc forcing.

e Ifb =Nq, T(R) doesn’t have property K.

Theorem (Balcar-Pazak-Thiummel). It is consistent that there exists a topological
space X such that T(X) is not ccc.

Theorem (Thimmel). T(( g O“"l <|ex>) satisfies the o-finite cc, but doesn'’t

acwiq
satisfies the o-bounded cc.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree,
K<w(R1 r,) holds and K<w({T(X); second countable X)}) also holds.



Appendices



Chodounsky-Zapletal’s Y-cc

Theorem (Y.). For a topological space X, if T(X) satisfies the ccc, then T(X)
adds no random reals.

They develop this.



Definition (Chodounsky-Zapletal). A forcing P satisfies Y-cc if

vV countable M < H(0) with P € M
VgeP
JdF € M filter on ro(IP) such that {r cro(P)NM;q <ro(P) r} C F.

T he followings are forcings which satisfies Y-cc:

e A o-centered forcing satisfies Y-cc.
e For a partition [X]2 = Ko U K7, define

Pk, := the set of finite Kg-homogeneous subsets of X, gPKO:zD

-

Qk, = [X]<N0, ¢ <Qp, P> g¢2pand Vo € g\ pVy Gp({x,y} S Ko)-

If Qk, satisfies the ccc, then both Pg, and Qg satisfy Y-cc.

e For a topological space X, if T(X) satisfies the ccc, then T(X) satisfies Y-cc.



Definition (Chodounsky-Zapletal). A forcing P satisfies Y-cc if

vV countable M < H(0) with P € M
VgeP
JdF € M filter on ro(IP) such that {r cro(P)NM;q <ro(P) r} C F.

T he followings are forcings with Y-cc:

e A o-centered forcing satisfies Y-cc.
e For a partition [X]2 = Ko U K7, define

Pk, := the set of finite Kg-homogeneous subsets of X, gPKO:zD

-

Qk, = [X]<N0, ¢ <Qp, P> g¢2pand Vo € ¢\ pWy €p<{w,y} S Ko)-

If Qk, satisfies the ccc, then both Pg, and Qg satisfy Y-cc.
e For a topological space X, if T(X) satisfies the ccc, then T(X) satisfies Y-cc.

Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.



Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.



Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.

Proof. Let P : Y-cc,
z . ro(P)-name for a real in “2,
p P,
M < H(0) : countable with {P,z,p} € M,
{Un;n € w} : open sets such that “2N M C ﬂ U, measure zero.

necw
Show that plk oy “ &€ () Un”.

new
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By Y-cc of P, there is a filter F € M on ro(P) with {r € ro(P) N M : q <,o(p) r} CF.
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S = {v c 2<% [z]|v| # Vvocpy € F}
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Note that S € M and (S,C) forms a tree.
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Proof. Let P : Y-cc,
z . ro(P)-name for a real in “2,
p P,
M < H(0) : countable with {P,z,p} € M,
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Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.
Proof. Let P : Y-cc,

z . ro(P)-name for a real in “2,

pel,

M < H(0) : countable with {P,z,p} € M,

{Un;n € w} : open sets such that “2N M C ﬂ U, measure zero.

ncw

Show that plk oy “ &€ () Un”.

ncw
Assume not, then we can take g <p p and m € w such that ¢ IFrO(P) Yo Un".
By Y-cc of P, there is a filter F € M on ro(P) with {r € ro(P) N M : q <,o(p) 7“} CF.
Define

S = {v c 2<% [z]|v| # Vvocpy € F}
Note that S € M and (S,C) forms a tree. Point . S is infitite.
Because, if S is finite, then there exists k € w such that S C 2<k put then
0# [ [tk # vlyocmy From) * 1k & ko

vek2

which is a contradiction.
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Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.
Proof. Let P : Y-cc,

z . ro(P)-name for a real in “2,

pel,

M < H(0) : countable with {P,z,p} € M,

{Un;n € w} : open sets such that “2N M C ﬂ U, measure zero.

ncw

Show that plk oy “ &€ () Un”.

new

Assume not, then we can take g <p p and m € w such that ¢ IFrO(P) Yo Un".
By Y-cc of P, there is a filter F € M on ro(P) with {r € ro(P) N M : q <,o(p) r} CF.
Define

S = {U € 2<Y; [z]|v]| # Vvocpy € F}
Note that S € M and (S,C) forms a tree. Point . S is infitite.
So we can take u € “2N M with Vk, ulk € S, and take [ € w with [u]l] C Upn,.
Then g - [zl = u[l],op) 7 O,

Because, if ¢ [z[l = u[l]]ro(ﬂp) = 0, then q- [z]l # um]ro(IP’) — q holds, i.e.
q <rop) Il 7 ull];opy € ro(P) N M, which is a contradiction.




Theorem (Chodounsky-Zapletal). A Y-cc forcing adds no random reals.
Proof. Let P : Y-cc,

z . ro(P)-name for a real in “2,

pel,

M < H(0) : countable with {P,z,p} € M,

{Un;n € w} : open sets such that “2N M C ﬂ U, measure zero.

ncw

Show that plk oy “ &€ () Un”.

ncw
Assume not, then we can take g <p p and m € w such that ¢ IFrO(P) Yo Un".

By Y-cc of P, there is a filter F € M on ro(P) with {r € ro(P) N M : q <,o(p) r} CF.
Define

S = {v c 2<% [z]|v| # Vvocpy € F}

Note that S € M and (S,C) forms a tree. Point . S is infitite.
So we can take u € “2N M with Vk, ulk € S, and take [ € w with [u]l] C Upn,.
Then g - [z[l = ull],opy 7 0, and hence

¢ [0 = ull],opy Frogry * & € [#11] = [ull] € Un*

which is a contradiction. []



The rectangle refining property

Definition (Larson—Todorcevic). A partition KqU K1 on [w1]? has the rectangle
refining property if

VIE w1 VJ e w1
31 e [I®1 3J € [J]®r such that Yael' ¥p e J, {a,8} € K.

Definition (Y.). A forcing notion P has the rectangle refining property if
o P C [w1]<®0 uncountable and <p=D2, and

e VIie[PIN1VJel[P™, ifIUJ forms a A-system, then
3I' € [II®t 37" € [JINr such thatVpe I Yqge J, p Lpq.

Proposition.

K5(rec) = Suslin’s Hypothesis
every (wi,wq1)-gap is indestructible,
b > Nj.

MANl(rec N FSCO») = every ladder system on w1 can be uniformized.



The rectangle refining property

Theorem (Y.). It is consistent that MAy, (rec) holds and there exists an entangled
set of reals, hence both C? and K fail.

Theorem (Y.). K5(rec) is equivalent to Ko(rec).
Theorem (Y.). It is consistent that K<, (recNFSCO3) holds and MAy, (recnFSCO5)

fails.

In particular, under MAy, (S), S forces K<u(rec NFSCO5).



The rectangle refining property

Definition (Y.). FSCO» is the collection of forcings P in FSCOqg such that

e for any uncountable subset I of P, there exists an uncountable subset I' of I
such that for every finite subset p of I', if p has a common extension in P, U p
iIs one of its common extensions, and

e for any uncountable subset {on; o € w1} Of P, there are an uncountable subset
[ of w1 and a sequence (o, a € ") such that

— for each a €T, o, <poa (i.e. o, D ga),
— the set {o),;a € w1} forms a A-system, and

— for every finite subset p of I, if the set {ol,;a € p} has a common extension

in P, then Uaep a& is its common extension and the set

{B cl; {a;; o € p} U {a/ﬁ} has a common extension in IP’}
IS uncountable.

Proposition. If P € FSCOq is ccc and closed under taking subsets, then P € FSCO».



Forcing extension with a separable measure algebra B

Theorem (Roitman, 1979). B forces the failure of C2.

Theorem (TodorCevi¢, 1986). B adds an entangled set of reals, hence B forces
the failure of K.

So the forcing extension with B is not interesting from a veiwpoint of Todorcevic's
question. But many people studies it.

Theorem (Laver, 1987). Under MANl, B forces every Aronszajn tree is special.

Theorem. Under MANI, B forces the following statements:
(Roitman? Kunen) MAy, (o-linked),

(Hirschorm) every (w1,wq1)-gap is indestructible,

(Moore) every ladder system coloring can be uniformized,

(Todorcevi¢, Moore) some statements about topology, e.g. (S) and (L) hold in
the class of cometrizable spaces.



Forcing with a non-separable measure algebra is quite different from forcing with
a separable one.

For example, in the extension with a non-separable measure algebra,

(Moore) there exists a ladder system coloring which cannot be uniformized,

(Hirschorn) there exists a destructible gap.



Forcing extension with a separable measure algebra B

Definition (Todorcevi¢, Balcar—Pazak—Thimmel). For a topological space X,
T(X) is the set of all subsets of X which are unions of finitely many convergent
sequences including their limit points, and for each p and q in T(X), q <t(x)Pp Iff
g2 p and ¢“np=pe

Theorem (TodorcCevi¢). e T(R) is a non-o-linked ccc forcing.

e ifb =Ny, T(R) doesn’t have property K.

Theorem (Balcar—Pazak—Thiummel). It is consistent that there exists a topolog-
ical space X such that T(X) is not ccc.

Theorem (Thimmel). T(( g O“Ll <|ex)) satisfies the o-finite cc, but doesn'’t

acwiy
satisfies the o-bounded cc.



Forcing extension with a separable measure algebra B

Definition (Todorcevi¢, Balcar—Pazak—Thimmel). For a topological space X,
T(X) is the set of all subsets of X which are unions of finitely many convergent
sequences including their limit points, and for each p and q in T(X), q <t(x)Pp Iff
g2 p and ¢“np=pe

Theorem (TodorcCevi¢). e T(R) is a non-o-linked ccc forcing.

e ifb =Ny, T(R) doesn’t have property K.

Theorem (Balcar—Pazak-Thimmel). It is consistent that there exists a topologi-
cal space X such that T(X) is not ccc.

Theorem (Thimmel). T(( g O“Ll <|ex)) satisfies the o-finite cc, but doesn'’t

acwiy
satisfies the o-bounded cc.

Theorem (Y.). Under MAy,, B forces MANl({T(X);X second countable}).



Forcing extension with a separable measure algebra B

Theorem (Y.). Under MAy,, B forces MANl({T(X);X second countable}).

Sketch of a proof. Let X be a second countable space. For each ¢ >0 (e < 1),
define

Pe = {(b,p) be B, u(b) >¢e, pis a B-name for a member of T(X)},
(b,p) <p, (V1) <= b<p¥ and blbg " p <p iy 0"
It suffices to show that each P is ccc.

Points of the proof are

e randomize the proof of the cccness of T(X) for a second countable X, and

e uUse an idea of Abraham—Rubin—Shelah’s club method.



Interesting approach to Todorcevic's question

Question (Todorcevic). Under MAy (S) (or PFA(S)), does S force C27 K47

We note that a Suslin tree forces
e t =Nq, SO MANl(a—centered) fails,

e every ladder system has a coloring which cannot be uniformized, so ICQL fails,

o K} fails.

Question. Under MAy, (S) (or PFA(S)), does S forces that there are no entangled
set of reals?

Or does a Suslin tree add an entangled set of reals?



Appendices

Definition (Abraham—Rubin—Shelah). A set E of reals is called entangled if E is
uncountable and

Vn € w Vs € ™0,1} VF C [FE]™ uncountable and pairwise disjoint

dx,y € F' with x %= y such that

Vi < n(a:(i) < y(i) = s(i) = o).

Suppose that £ = {rq; o € w1} is an entangled set of reals, and define

L= {<ra,ra_|_1> , o€ W even},
Py = {p e [L]<RNo; p is a chain in L}, <p, =2,

P = {p S [L]<N0;p IS an antichain in L}, <p, =2.

Then both Py and Py are ccc and Py x P has an uncountable antichain.
Py introduces a ccc partition which doesn’'t have uncountable 0O-homogeneous

sets.



Appendices

Definition (Y.). FSCO» is the collection of forcings P in FSCOqg such that

e for any uncountable subset I of P, there exists an uncountable subset I' of I
such that for every finite subset p of I', if p has a common extension in P, U p
iIs one of its common extensions, and

e for any uncountable subset {on; o € w1} Of P, there are an uncountable subset
[ of w1 and a sequence (o, a € ") such that

— for each a €T, o, <poa (i.e. o, D ga),
— the set {o),;a € w1} forms a A-system, and

— for every finite subset p of I, if the set {ol,;a € p} has a common extension

in P, then Uaep a& is its common extension and the set

{B cl; {a;; o € p} U {a/ﬁ} has a common extension in IP’}
IS uncountable.

Proposition. If P € FSCOq is ccc and closed under taking subsets, then P € FSCO».



