The structure of Fréchet-Urysohn and radial spaces

Robert Leek
DPhil student, University of Oxford
robert.leek@maths.ox.ac.uk
www.maths.ox.ac.uk/people/profiles/robert.leek

Winter School in Abstract Analysis,
Set Theory and Topology section,
5th February 2015
What are radial spaces?

Definition

X is *Fréchet-Urysohn* at x if whenever $x \in \overline{A}$, there exists a sequence $(x_n)_{n<\omega}$ in A that converges to x.

If X is Fréchet-Urysohn at every point x in X, then we say that the space is *Fréchet-Urysohn*.

Fréchet-Urysohn space

$(x_n)_{n<\omega} \to x$
What are radial spaces?

Definition

X is radial at x if whenever $x \in \overline{A}$, there exists a transfinite sequence $(x_\alpha)_{\alpha<\lambda}$ in A that converges to x.

If X is radial at every point x in X, then we say that the space is radial.
Definition

X is \textit{first-countable} at x if there exists a countable neighbourhood base for x. Equivalently, there exists a descending neighbourhood base $(U_n)_{n<\omega}$ for x. If X is first-countable at every point x in X, then we say that the space is \textit{first-countable}.

First countable space
Definition

X is \textit{well-based} at x if it has a well-ordered neighbourhood base with respect to \supseteq. If X is well-based at every point x in X, then we say that the space is \textit{well-based}.
Some examples

Definition

- **LOTS** := Linearly-Ordered Topological Space
- **GO-space** := Generalised-Ordered space = Subspaces of **LOTS**

![Diagram of LOTS (or GO-space)](image-url)
Some examples

Definition

$\text{LOTS} := \text{Linearly-Ordered Topological Space}$

$\text{GO-space} := \text{Generalised-Ordered space} = \text{Subspaces of LOTS}$
Some examples

Definition

LOTS := Linearly-Ordered Topological Space

GO-space := Generalised-Ordered space = Subspaces of **LOTS**

Definition

A *spoke* for a point is a well-based subspace containing that point.
Introducing spoke systems

Definition

A collection of spokes \mathcal{S} for a point x is a *spoke system* for x if

$$
\mathcal{B} := \left\{ \bigcup_{S \in \mathcal{S}} B_S : \forall S \in \mathcal{S}, B_S \in \mathcal{N}_x^S \right\}
$$

is a neighbourhood base for x, where \mathcal{N}_x^S is the collection of S-neighbourhoods of x, for each $S \in \mathcal{S}$.

Theorem

Every point with a spoke system is radial.
Introducing spoke systems

Definition

A collection of spokes \mathcal{I} for a point x is a *spoke system* for x if

$$
\mathcal{B} := \left\{ \bigcup_{S \in \mathcal{I}} B_S : \forall S \in \mathcal{I}, B_S \in \mathcal{N}_x^S \right\}
$$

is a neighbourhood base for x, where \mathcal{N}_x^S is the collection of S-neighbourhoods of x, for each $S \in \mathcal{I}$. Equivalently, for all $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathcal{I}$ such that $x \in A \cap \overline{S}$.
Introducing spoke systems

Definition

A collection of spokes \mathcal{I} for a point x is a *spoke system* for x if

$$\mathcal{B} := \left\{ \bigcup_{S \in \mathcal{I}} B_S : \forall S \in \mathcal{I}, B_S \in \mathcal{N}^S_x \right\}$$

is a neighbourhood base for x, where \mathcal{N}^S_x is the collection of S-neighbourhoods of x, for each $S \in \mathcal{I}$. Equivalently, for all $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathcal{I}$ such that $x \in \overline{A \cap S}$.

Theorem

Every point with a spoke system is radial.
Introducing spoke systems

Definition

A transfinite sequence \((x_\alpha)_{\alpha<\lambda}\) converges strictly to a point \(x\) if it converges to \(x\) and \(x\) is not in the closure of any initial segment; that is, \(x \notin \{x_\alpha : \alpha < \beta\}\), for all \(\beta < \lambda\).

Lemma

If \(X\) is radial at \(x\) and \(x \in \overline{A}\), then there exists an injective transfinite sequence in \(A\) that converges strictly to \(x\).
Introducing spoke systems

Definition

A transfinite sequence \((x_\alpha)_{\alpha<\lambda}\) \textit{converges strictly} to a point \(x\) if it converges to \(x\) and \(x\) is not in the closure of any initial segment; that is, \(x \notin \{x_\alpha : \alpha < \beta\}\), for all \(\beta < \lambda\).

Lemma

If \(X\) is radial at \(x\) and \(x \in \overline{A}\), then there exists an injective transfinite sequence in \(A\) that converges strictly to \(x\).

Lemma

Let \((x_\alpha)_{\alpha<\lambda}\) be an injective transfinite sequence that converges strictly to \(x\). Then \(S_{(x_\alpha)_{\alpha<\lambda}} := \{x\} \cup \{x_\alpha : \alpha < \lambda\}\) is a spoke for \(x\).
An internal characterisation of radiality

Theorem

For a point \(x \) in a topological space \(X \), the following are equivalent:

1. \(X \) is radial at \(x \).
2. \(X \) has an almost-independent spoke system \(\mathcal{S} \) at \(x \); that is, for distinct \(S, T \in \mathcal{S}, x \notin (S \cap T) \setminus \{x\} \).
An internal characterisation of radiality

Theorem

For a point x in a topological space X, the following are equivalent:

1. X is radial at x.
2. X has an almost-independent spoke system \mathcal{S} at x; that is, for distinct $S, T \in \mathcal{S}, x \notin (S \cap T) \setminus \{x\}$.

Proof.

If X is radial at x and not isolated, define:

$$
\mathcal{T} := \{f : \lambda \to X \setminus \{x\} \mid \lambda \leq |X|, f \text{ is injective and } f \to x \text{ strictly}\}
$$

$$
\mathcal{A} := \{\mathcal{T} \subseteq \mathcal{T} : \forall f, g \in \mathcal{T} \text{ distinct, } f^{-1}[\text{ran}(g)] \text{ is bdd. in } \text{dom}(f)\}
$$

Pick $\mathcal{T} \in \mathcal{A}$ maximal and define $\mathcal{I} := \{S_f : f \in \mathcal{T}\}$. □
Proposition

Let \mathcal{S} be a spoke system for x and $(x_\alpha)_{\alpha<\lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_\alpha : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathcal{S}$ and a subsequence of $(x_\alpha)_{\alpha<\lambda}$ contained in S and converging to x.
Some properties of spoke systems

Proposition

Let \mathcal{S} be a spoke system for x and $(x_\alpha)_{\alpha<\lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_\alpha : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathcal{S}$ and a subsequence of $(x_\alpha)_{\alpha<\lambda}$ contained in S and converging to x.

Proof.

As $x \in \{x_\alpha : \alpha < \lambda\}$, there exists an $S \in \mathcal{S}$ such that $x \in \{x_\alpha : \alpha < \lambda\} \cap S$. Then $\chi(x, S) = \lambda$...
Some properties of spoke systems

Proposition

Let \mathcal{S} be a spoke system for x and $(x_\alpha)_{\alpha<\lambda}$ be a transfinite sequence clustering at x with $x \notin \{x_\alpha : \alpha < \beta\}$ for $\beta < \lambda$, where λ is a regular ordinal. Then there exists an $S \in \mathcal{S}$ and a subsequence of $(x_\alpha)_{\alpha<\lambda}$ contained in S and converging to x.

Proof.

As $x \in \{x_\alpha : \alpha < \lambda\}$, there exists an $S \in \mathcal{S}$ such that $x \in \{x_\alpha : \alpha < \lambda\} \cap S$. Then $\chi(x, S) = \lambda\ldots$ ⌊

Proposition

If \mathcal{S} is an independent spoke system for x and $(x_\alpha)_{\alpha<\lambda} \subseteq X\setminus\{x\}$ converges to x, with λ regular, then there exists $\mathcal{T} \in [\mathcal{S}]^{<\lambda}$ and $\beta < \lambda$ such that $\{x_\alpha : \alpha \in [\beta, \lambda)\} \subseteq \bigcup \mathcal{T}$.
A point \(x \) in a space \(X \) is **strongly Fréchet** if for every decreasing sequence of subsets \((A_n) \) with \(x \in \bigcap_{n \in \omega} \overline{A_n} \), there exists a sequence \((x_n) \) converging to \(x \) with \(x_n \in A_n \) for all \(n \in \omega \).
Definition (Strongly Fréchet)

A point x in a space X is strongly Fréchet if for every decreasing sequence of subsets (A_n) with $x \in \bigcap_{n \in \omega} A_n$, there exists a sequence (x_n) converging to x with $x_n \in A_n$ for all $n \in \omega$.

Theorem

Let x be a Fréchet-Urysohn point in X. Then x is strongly Fréchet if and only if for all (non-trivial) spoke systems \mathcal{S} at x and every countably infinite subset $A \subseteq \mathcal{S}$, there exists an $S \in \mathcal{S}$ such that $A \cap S \neq \{x\}$ for all $A \in \mathcal{A}$.

Sketch proof.

\Rightarrow: consider $A_n := \bigcup_{m=n}^{\infty} S_m$, where $(S_m) \subseteq \mathcal{S}$.

\Leftarrow: use Zorn’s Lemma (similar to proof of existence of almost-independent spoke systems).
Definition (Independently-based)

We say that a point x is *independently-based* if it has an independent spoke system \mathcal{S}; that is, $S \cap T = \{x\}$ for all distinct $S, T \in \mathcal{S}$.

Equivalently, there exists a collection C of nests of neighbourhoods of x such that

$\{ \bigcap C : \forall C \in C, U_C \in C \}$ is a neighbourhood base for x and for every selection $(U_C)_{C \in C}$, $\bigcap C \in C \cup C : (U_C \cap S_C)$

where $S_C : \bigcap \{ \bigcap D : D \in C, D \neq C \}$.
Definition (Independently-based)

We say that a point x is \textit{independently-based} if it has an \textit{independent} spoke system \mathcal{S}; that is, $S \cap T = \{x\}$ for all distinct $S, T \in \mathcal{S}$. Equivalently, there exists a collection \mathcal{C} of nests of neighbourhoods of x such that

$$\left\{ \bigcap_{C \in \mathcal{C}} U_C : \forall C \in \mathcal{C}, U_C \in \mathcal{C} \right\}$$

is a neighbourhood base for x and for every selection $(U_C)_{C \in \mathcal{C}}$,

$$\bigcap_{C \in \mathcal{C}} U_C = \bigcup_{C \in \mathcal{C}} (U_C \cap S_C)$$

where $S_C := \bigcap\{\bigcap D : D \in \mathcal{C}, D \neq C\}$.
\[C_1 \in \mathcal{C}_1 \]

\[C_2 \in \mathcal{C}_2 \]

\[C_3 \in \mathcal{C}_3 \]
$C_1 \in \mathcal{C}_1$

$C_2 \in \mathcal{C}_2$

$C_3 \in \mathcal{C}_3$

$C_1 \cap C_2 \cap C_3$
$C_1 \in \mathcal{C}_1$

$C_2 \in \mathcal{C}_2$

$C_3 \in \mathcal{C}_3$

$C_1 \cap C_2 \cap C_3$
Theorem

A point x in a space X is first countable if and only if it is independently-based and strongly Fréchet.

Corollary

There exists a Fréchet-Urysohn space that is not independently-based.

Proof.

Take $X = \alpha D (\aleph_1)$.
Theorem

A point \(x \) in a space \(X \) is first countable if and only if it is independently-based and strongly Fréchet.

Corollary

There exists a Fréchet-Urysohn space that is not independently-based.

Proof.

Take \(X = \alpha D(\aleph_1) \). \(\square \)
Theorem

A point x in a space X is first countable if and only if it is independently-based and strongly Fréchet.

Corollary

There exists a Fréchet-Urysohn space that is not independently-based.

Proof.

Take $X = \alpha D(\aleph_1)$.

Theorem

There exists a Fréchet-Urysohn space with a point that is neither strongly Fréchet nor independently-based.
Lemma (Reflection Lemma)

Let x be a Fréchet-Urysohn point, \mathcal{I}, \mathcal{T} be spoke systems at x, with \mathcal{T} independent. Then for all $K_S := \{ T \in \mathcal{T} : x \in (S \cap T) \setminus \{x\} \}$ is finite, for all $S \in \mathcal{I}$.
Independently-based spaces

Lemma (Reflection Lemma)

Let \(x \) be a Fréchet-Urysohn point, \(\mathcal{S}, \mathcal{T} \) be spoke systems at \(x \), with \(\mathcal{T} \) independent. Then for all \(K_S := \{ T \in \mathcal{T} : x \in (S \cap T)\setminus\{x\} \} \) is finite, for all \(S \in \mathcal{S} \).

Sketch proof of previous theorem.

For \(x \in \mathbb{R}^2\setminus\{0\} \), define \(S_x := \{ y \in \mathbb{R}^2 : \|y - x\| = \|x\| \} \) and let \(\mathcal{B} := \{ \bigcup_{x \in \mathbb{R}^2\setminus\{0\}} (S_x \cap B(0, \epsilon_x)) : \forall x \in \mathbb{R}^2\setminus\{0\}, \epsilon_x > 0 \} \). If \(0 \) is independently-based, then for each \(x \in \mathbb{R}^2\setminus\{0\} \), there exists an \(\epsilon_x > 0 \) such that \(S_x \cap S_y \cap B(0, \min(\epsilon_x, \epsilon_y)) = \{0\} \) for all distinct \(x, y \in \mathbb{R}^2\setminus\{0\} \). By the Baire category theorem, we obtain a contradiction.
Some problems

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>If x is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then $\chi(x, X) = 0$.</td>
</tr>
</tbody>
</table>
Some problems

Proposition

If x is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then $\chi(x, X) = 0$.

Question

What if x has no countable, almost-independent spoke system?
Proposition

If \(x \) is a Fréchet-Urysohn, non-first-countable point with a countable, almost-independent spoke system, then \(\chi(x, X) = \emptyset \).

Question

What if \(x \) has no countable, almost-independent spoke system?

Question

Let \(\mathcal{A} \) be an almost-disjoint family on \(\omega \) and topologise \(\omega \cup \{\star\} \) by declaring \(A \) to be a sequence converging to \(\star \) and \(\{A \cup \{\star\} : A \in \mathcal{A}\} \) is a spoke system at \(\star \) (so \(\omega \cup \{\star\} \cong \Psi(\mathcal{A})/\mathcal{A} \)). What is the character of \(\star \)?
R. Leek.
Convergence properties and compactifications.
Submitted, 2014.

R. Leek.
An internal characterisation of radiality.