Game theoretic approach to skeletally Dugundji and Dugundji spaces

by

A. Kucharski (co-author), Sz. Plewik (speaker) and V. Valov (co-author)

Abstract: Let \(g \) and \(\phi \) be two maps defined on a space \(X \). If there exists a map \(h : \phi(X) \to g(X) \) such that \(g = h \circ \phi \), then we write \(\phi \prec g \).

A family \(\Psi \) of maps with a common domain \(X \) is a multiplicative lattice of skeletal (open) maps whenever:

(L0) \(\Psi \) consists of skeletal (open), maps, only;
(L1) For any map \(f : X \to f(X) \) there exists \(\phi \in \Psi \) with \(\phi \prec f \) and \(w(\phi(X)) \leq w(f(X)) \);
(L2) If \(\{\phi_\alpha : \alpha \in J\} \subset \Psi \), then the diagonal map \(\Delta\{\phi_\alpha : \alpha \in J\} \) is homeomorphic to some element of \(\Psi \).

A Tychonoff space \(X \) is called skeletally Dugundji if it has a multiplicative lattice of skeletal maps. A Dugundji space one can define as a Compact Hausdorff space which have a multiplicative latices of open maps. Characterizations of skeletally Dugundji spaces and Dugundji spaces are given in terms of club collections, consisting of countable families of co-zero sets. For example, a Tychonoff space \(X \) is skeletally Dugundji if and only if there exists an additive \(c \)-club on \(X \). Dugundji spaces are characterized by the existence of additive \(d \)-clubs.