Compactifications of ω and the Banach space c_0

Grzegorz Plebanek

Instytut Matematyczny, Universytet Wrocławski

joint work with Piotr Drygier

Winter School in Abstract Analysis
Hejnice, February 2015
Banach spaces

Notation

$C(K)$ is the space of continuous functions $K \to \mathbb{R}$.

c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.

l_∞ is the space of bounded sequences, $l_\infty = C(\beta\omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X = Y \oplus Z$ for some closed subspace $Z \subseteq X$.

Equivalently, there is a bounded linear operator $P : X \to X$, which is a projection i.e. $P \circ P = P$, and such that $P(X) = Y$.

Classical results

(a) Sobczyk: If X is separable then every isomorphic copy of c_0 in X is complemented.

(b) Phillips: c_0 is not complemented in l_∞.
Banach spaces

Notation

- $C(K)$ is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.
- l_∞ is the space of bounded sequences, $l_\infty = C(\beta \omega)$.
Banach spaces

Notation

- $C(K)$ is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.
- l_{∞} is the space of bounded sequences, $l_{\infty} = C(\beta \omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X = Y \oplus Z$ for some closed subspace $Z \subseteq X$.

Equivalently, there is a bounded linear operator $P : X \to X$, which is a projection i.e. $P \circ P = P$, and such that $P(X) = Y$.

Classical results

(a) Sobczyk: If X is separable then every isomorphic copy of c_0 in X is complemented.
(b) Phillips: c_0 is not complemented in l_{∞}.
Banach spaces

Notation
- $C(K)$ is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.
- l_∞ is the space of bounded sequences, $l_\infty = C(\beta \omega)$.

Complemented subspaces
A closed subspace Y of a Banach space X is complemented if $X = Y \oplus Z$ for some closed subspace $Z \subseteq X$. Equivalently, there is a bounded linear operator $P : X \to X$, which is a projection i.e. $P \circ P = P$, and such that $P(X) = Y$.

Classical results
(a) **Sobczyk:** If X is separable then every isomorphic copy of c_0 in X is complemented.
(b) **Phillips:** c_0 is not complemented in l_∞.
c_0 in $C(K)$, K infinite compact

$\mathcal{X} = \{ X \subseteq C(K) : X$ is isomorphic to $c_0 \}$;
$\mathcal{X}_c = \{ X \in \mathcal{X} : X$ is complemented in $C(K) \}$.
c_0 in $C(K)$, K infinite compact

$\mathcal{K} = \{X \subseteq C(K) : X$ is isomorphic to $c_0\};$

$\mathcal{K}_c = \{X \in \mathcal{K} : X$ is complemented in $C(K)\}.$

Various positions (of c_0)
c_0 in $C(K)$, K infinite compact

\[\mathcal{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \}; \]
\[\mathcal{X}_c = \{ X \in \mathcal{X} : X \text{ is complemented in } C(K) \}. \]

Various positions (of c_0)

- $\mathcal{X}_c = \emptyset$; $C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
c_0 in $C(K)$, K infinite compact

$\mathcal{K} = \{X \subseteq C(K) : X$ is isomorphic to $c_0\};$

$\mathcal{K}_c = \{X \in \mathcal{K} : X$ is complemented in $C(K)\}.$

Various positions (of c_0)

- $\mathcal{K}_c = \emptyset$; $C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.

- $\mathcal{K}_c \neq \emptyset$; example: K containing a converging sequence.
c_0 in $C(K)$, K infinite compact

$\mathcal{K} = \{X \subseteq C(K) : X \text{ is isomorphic to } c_0\}$;
$\mathcal{K}_c = \{X \in \mathcal{K} : X \text{ is complemented in } C(K)\}$.

Various positions (of c_0)

- $\mathcal{K}_c = \emptyset$; $C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
- $\mathcal{K}_c \neq \emptyset$; example: K containing a converging sequence.
- \mathcal{K}_c coinitial in \mathcal{K}; example: K Rosenthal compact, K admitting only small measures (Drygier & GP).
c_0 in $C(K)$, K infinite compact

$$\mathcal{X} = \{X \subseteq C(K) : X \text{ is isomorphic to } c_0\};$$
$$\mathcal{X}_c = \{X \in \mathcal{X} : X \text{ is complemented in } C(K)\}.$$

Various positions (of c_0)

- $\mathcal{X}_c = \emptyset$; $C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
- $\mathcal{X}_c \neq \emptyset$; example: K containing a converging sequence.
- \mathcal{X}_c coinitial in \mathcal{X}; example: K Rosenthal compact, K admitting only small measures (Drygier & GP).
- $\mathcal{X}_c = \mathcal{X}$; examples: compact lines (Correa & Tausk).
Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points. Then $C(\gamma \omega)$ contains (a natural copy of) c_0, namely $c_0 = \{ g \in C(\gamma \omega) : g|_{\gamma \omega \setminus \omega} \equiv 0 \}$.

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim

Problem Characterize $\gamma \omega$ such that c_0 is complemented in $C(\gamma \omega)$.

Recall that c_0 is complemented in $C(\gamma \omega)$ whenever $\gamma \omega$ is metrizable. c_0 is not complemented in $C(\beta \omega)$.
Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points.
Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points.

Then $C(\gamma \omega)$ contains (a natural copy of) c_0, namely

$$c_0 = \{ g \in C(\gamma \omega) : g|_{\gamma \omega \setminus \omega} \equiv 0 \},$$

$$c_0 \ni e_n \rightarrow \chi_{\{n\}} \in C(\gamma \omega).$$
Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points

Then $C(\gamma \omega)$ contains (a natural copy of) c_0, namely

$$c_0 = \{ g \in C(\gamma \omega) : g|\gamma \omega \setminus \omega \equiv 0 \},$$

$$c_0 \ni e_n \to \chi_{\{n\}} \in C(\gamma \omega).$$

Problem: Characterize $\gamma \omega$ such that c_0 is complemented in $C(\gamma \omega)$.

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim
Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points. Then $C(\gamma \omega)$ contains (a natural copy of) c_0, namely

$$c_0 = \{ g \in C(\gamma \omega) : g|_{\gamma \omega \setminus \omega} \equiv 0 \},$$

$$c_0 \ni e_n \to \chi_{\{n\}} \in C(\gamma \omega).$$

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim

Problem Characterize $\gamma \omega$ such that c_0 is complemented in $C(\gamma \omega)$.

Recall that

- c_0 is complemented in $C(\gamma \omega)$ whenever $\gamma \omega$ is metrizable.
- c_0 is not complemented in $C(\beta \omega)$.
Compactifications of ω and subalgebras of $P(\omega)$

Every zerodimensional $\gamma\omega$ may be seen as the Stone space $\text{ult}(A)$ of some algebra $A \subseteq P(\omega)$ containing fin. We shall write $K_A = \text{ult}(A)$ for such a compactification and $K^*_A = K_A \setminus \omega$ for its remainder.

Finitely additive measures $\text{ba}^+(A)$ denote the space of all bounded finitely additive measures on A.

$\text{ba}^+(A) = \{\mu_1 - \mu_2 : \mu_1, \mu_2 \in \text{ba}^+(A)\}$ is the space of all signed measures. Essentially, $\text{ba}^+(A)$ is the dual Banach space of all functionals on $C(K_A)$.
Every zerodimensional $\gamma\omega$ may be seen as the Stone space $\text{ult}(\mathcal{A})$ of some algebra $\mathcal{A} \subseteq P(\omega)$ containing fin. We shall write $K_{\mathcal{A}} = \text{ult}(\mathcal{A})$ for such a compactification and $K_{\mathcal{A}}^* = K_{\mathcal{A}} \setminus \omega$ for its remainder.
Compactifications of ω and subalgebras of $P(\omega)$

Every zerodimensional $\gamma\omega$ may be seen as the Stone space $\text{ult}(\mathcal{A})$ of some algebra $\mathcal{A} \subseteq P(\omega)$ containing fin.
We shall write $K_{\mathcal{A}} = \text{ult}(\mathcal{A})$ for such a compactification and $K_{\mathcal{A}}^* = K_{\mathcal{A}} \setminus \omega$ for its remainder.

Finitely additive measures

Let $ba_+(\mathcal{A})$ denote the space of all bounded finitely additive measures on \mathcal{A}.

$$ba_+(\mathcal{A}) = \{\mu_1 - \mu_2 : \mu_1, \mu_2 \in ba_+(\mathcal{A})\}$$

is the space of all signed measures. Essentially, $ba(\mathcal{A})$ is the dual Banach space of all functionals on $C(K_{\mathcal{A}})$.
Basic lemma

The following are equivalent for \(\text{fin} \subseteq A \subseteq \mathcal{P}(\omega) \):

(i) \(c_0 \) is complemented in \(C(KA) \);

(ii) there is a uniformly bounded sequence \((\nu_n)\) in \(\text{ba}(A) \) such that every \(\nu_n \) vanishes on \(\text{fin} \) and \(\nu_n - \delta_n \to 0 \).

Remarks

\(\nu_n - \delta_n \to 0 \) means that for every \(A \in A \)

\[\lim_{n \to A} \nu_n(A) = 1 \text{ and } \lim_{n \to A} \nu_n(\omega \setminus A) = 0. \]

If \(c_0 \) is complemented in \(C(KA) \) then \(KA^* \) must carry a strictly positive measure.
The following are equivalent for \(\text{fin} \subseteq \mathcal{A} \subseteq P(\omega) \):

(i) \(c_0 \) is complemented in \(C(K_{\mathcal{A}}) \);

(ii) there is a uniformly bounded sequence \((\nu_n)_n\) in \(\text{ba}(\mathcal{A}) \) such that every \(\nu_n \) vanishes on \(\text{fin} \) and \(\nu_n - \delta_n \to 0 \).
The following are equivalent for $\text{fin} \subseteq \mathcal{A} \subseteq P(\omega)$

(i) c_0 is complemented in $C(K_{\mathcal{A}})$;
(ii) there is a uniformly bounded sequence $(\nu_n)_n$ in $\text{ba}(\mathcal{A})$ such that every ν_n vanishes on fin and $\nu_n - \delta_n \to 0$.

Remark

$\nu_n - \delta_n \to 0$ means that for every $A \in \mathcal{A}$

$$\lim_{n \in A} \nu_n(A) = 1 \text{ and } \lim_{n \in A} \nu_n(\omega \setminus A) = 0.$$
Lemma

The following are equivalent for $\text{fin} \subseteq \mathcal{A} \subseteq \mathcal{P}(\omega)$

(i) c_0 is complemented in $C(K_{2\mathbb{I}})$;

(ii) there is a uniformly bounded sequence $(\nu_n)_n$ in $\text{ba}(\mathcal{A})$ such that every ν_n vanishes on fin and $\nu_n - \delta_n \to 0$.

Remarks

- $\nu_n - \delta_n \to 0$ means that for every $A \in \mathcal{A}$

$$\lim_{n \in A} \nu_n(A) = 1 \quad \text{and} \quad \lim_{n \in A} \nu_n(\omega \setminus A) = 0.$$

- If c_0 is complemented in $C(K_{2\mathbb{I}})$ then $K_{2\mathbb{I}}^*$ must carry a strictly positive measure.
Suppose that $\mathcal{F} \subseteq \mathcal{A} \subseteq \mathcal{P}(\omega)$ and the quotient map

$$\mathcal{A} \rightarrow \mathcal{A}/\mathcal{F},$$

admits a lifting. Then c_0 is complemented in $C(\mathcal{K}\mathcal{A})$.

Proof. By our assumption there is a homomorphism $\theta: \mathcal{A}/\mathcal{F} \rightarrow \mathcal{A}$, such that $\theta(a) \cdot = a$ for $a \in \mathcal{A}/\mathcal{F}$.

Define $\nu_n \in \text{ba}^+(\mathcal{A})$ saying that $\nu_n(a) = 1$ if $n \in \theta(\mathcal{A} \cdot)$ and $\nu_n(a) = 0$ otherwise. Then $\nu_n - \delta_n \rightarrow 0$.

Remark There is a lifting for $\mathcal{A} \rightarrow \mathcal{A}/\mathcal{F}$ iff \mathcal{A} is generated by \mathcal{F} and an algebra \mathcal{A}_0 such that every nonempty $\mathcal{A} \in \mathcal{A}_0$ is infinite.
Proposition

Suppose that $\text{fin} \subseteq \mathcal{A} \subseteq P(\omega)$ and the quotient map $\mathcal{A} \to \mathcal{A}/\text{fin}$, $A \to A^\bullet$, admits a lifting. Then c_0 is complemented in $C(K_{2\mathfrak{i}})$.

Proof. By our assumption there is a homomorphism $\theta : \mathcal{A}/\text{fin} \to \mathcal{A}$, such that $\theta(a) \cdot = a$ for $a \in \mathcal{A}/\text{fin}$.

Define $\nu_n \in ba(A) + (A)$ saying that $\nu_n(A) = 1$ if $n \in \theta(A^\bullet)$ and $\nu_n(A) = 0$ otherwise.

Then $\nu_n - \delta_n \to 0$.

Remark There is a lifting for $\mathcal{A} \to \mathcal{A}/\text{fin}$ iff \mathcal{A} is generated by fin and an algebra \mathcal{A}_0 such that every nonempty $\mathcal{A} \in \mathcal{A}_0$ is infinite.
Suppose that $\text{fin} \subseteq \mathcal{A} \subseteq P(\omega)$ and the quotient map $\mathcal{A} \to \mathcal{A}/\text{fin}$, $\mathcal{A} \to A^\bullet$, admits a lifting. Then c_0 is complemented in $C(K_{2\Omega})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathcal{A}/\text{fin} \to \mathcal{A}$, such that $\theta(a)^\bullet = a$ for $a \in \mathcal{A}/\text{fin}$.
Proposition

Suppose that \(\text{fin} \subseteq \mathcal{A} \subseteq P(\omega) \) and the quotient map \(\mathcal{A} \to \mathcal{A}/\text{fin}, \mathcal{A} \to \mathcal{A}^\bullet \), admits a lifting. Then \(c_0 \) is complemented in \(C(K_{2\mathcal{A}}) \).

Proof.

By our assumption there is a homomorphism \(\theta : \mathcal{A}/\text{fin} \to \mathcal{A} \), such that \(\theta(a)^\bullet = a \) for \(a \in \mathcal{A}/\text{fin} \).

Define \(\nu_n \in \text{ba}_+(\mathcal{A}) \) saying that \(\nu_n(A) = 1 \) if \(n \in \theta(A^\bullet) \) and \(\nu_n(A) = 0 \) otherwise.
Proposition

Suppose that $\text{fin} \subseteq \mathcal{A} \subseteq P(\omega)$ and the quotient map $\mathcal{A} \to \mathcal{A}/\text{fin}$, $A \to A^\bullet$, admits a lifting. Then c_0 is complemented in $C(K_{\mathcal{A}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathcal{A}/\text{fin} \to \mathcal{A}$, such that $\theta(a)^\bullet = a$ for $a \in \mathcal{A}/\text{fin}$.

Define $\nu_n \in \text{ba}_+(\mathcal{A})$ saying that $\nu_n(A) = 1$ if $n \in \theta(A^\bullet)$ and $\nu_n(A) = 0$ otherwise.

Then $\nu_n - \delta_n \to 0$.

Remark

There is a lifting for $\mathcal{A} \to \mathcal{A}/\text{fin}$ iff \mathcal{A} is generated by fin and an algebra \mathcal{A}_0 such that every nonempty $A \in \mathcal{A}_0$ is infinite.
Proposition

Suppose that $\text{fin} \subseteq \mathcal{A} \subseteq P(\omega)$ and the quotient map $\mathcal{A} \to \mathcal{A}/\text{fin}, A 	o A^\bullet$, admits a lifting. Then c_0 is complemented in $C(K_{2\mathbb{I}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathcal{A}/\text{fin} \to \mathcal{A}$, such that $\theta(a)^\bullet = a$ for $a \in \mathcal{A}/\text{fin}$.
Define $\nu_n \in \text{ba}_+(\mathcal{A})$ saying that $\nu_n(A) = 1$ if $n \in \theta(A^\bullet)$ and $\nu_n(A) = 0$ otherwise.
Then $\nu_n - \delta_n \to 0$.

Remark

There is a lifting for $\mathcal{A} \to \mathcal{A}/\text{fin}$ iff \mathcal{A} is generated by fin and an algebra \mathcal{A}_0 such that every nonempty $A \in \mathcal{A}_0$ is infinite.
Example: the measure algebra

Let $B = \text{Bor}([0, 1] \setminus \{\lambda = 0\}$ and $S = \text{ult}(B)$ is nonseparable and carries a strictly positive measure.

Frankiewicz & Gutek: Under CH, there is an embedding $\phi: B \to \mathcal{P}(\omega)/\text{fin}$ such that $\lambda(b) = d(\phi(a))$ where $d(\cdot)$ is the usual asymptotic density.

Dow & Hart: Under OCA, B does not embed into $\mathcal{P}(\omega)/\text{fin}$.

Example using ϕ: $B \to \mathcal{P}(\omega)/\text{fin}$

Let $A = \{A \subseteq \omega; A \cdot \in \phi(B)\}$. Then $K^* A = S = \mathcal{C}(K^* A) = \mathcal{C}(S) \equiv L_\infty([0, 1])$ contains no complemented copy of c_0 (is a Grothendieck space).

Drygier & GP: c_0 is not complemented in $\mathcal{C}(K A)$ though the remainder $K^* A$ supports a measure.

$\mathcal{C}(K A)$ contains a complemented copy of c_0, spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.
Example: the measure algebra

Let $\mathcal{B} = Bor[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek:** Under CH, there is an embedding $\phi : \mathcal{B} \to P(\omega)/\text{fin}$ such that $\lambda(b) = d(\phi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart:** Under OCA, \mathcal{B} does not embed into $P(\omega)/\text{fin}$.

- $C(K^*A)$ contains a complemented copy of c_0, spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.

- $C(K^*A)$ contains no complemented copy of c_0 (is a Grothendieck space).

- Drygier & GP: c_0 is not complemented in $C(K^*A)$ though the remainder K^*A supports a measure.
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek:** Under CH, there is an embedding $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart:** Under OCA, \mathcal{B} does not embed into $P(\omega)/\text{fin}$.

2. **Drygier & GP:** c_0 is not complemented in $C(K^*A)$ though the remainder K^*A supports a measure.

3. $C(K^*A)$ contains a complemented copy of c_0, spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek:** Under CH, there is an embedding $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart:** Under OCA, \mathcal{B} does not embed into $P(\omega)/\text{fin}$.

Example using $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$

Let $\mathcal{A} = \{ A \subseteq \omega; A^\bullet \in \varphi(\mathcal{B}) \}$. Then $K_{\mathcal{A}}^* = S$
Example: the measure algebra

- Let $\mathcal{B} = Bor[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek**: Under CH, there is an embedding $\phi : \mathcal{B} \to \mathcal{P}(\omega)/\text{fin}$ such that $\lambda(b) = d(\phi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart**: Under OCA, \mathcal{B} does not embed into $\mathcal{P}(\omega)/\text{fin}$.

Example using $\phi : \mathcal{B} \to \mathcal{P}(\omega)/\text{fin}$

Let $\mathcal{A} = \{ A \subseteq \omega; A^\bullet \in \phi(\mathcal{B}) \}$. Then $K_{\mathcal{A}}^* = S$.

1. $C(K_{\mathcal{A}}^*) = C(S)(\equiv L_\infty[0,1])$ contains no complemented copy of c_0 (is a Grothendieck space).
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek:** Under CH, there is an embedding $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart:** Under OCA, \mathcal{B} does not embed into $P(\omega)/\text{fin}$.

Example using $\varphi : \mathcal{B} \to P(\omega)/\text{fin}$

Let $\mathcal{A} = \{A \subseteq \omega; A^* \in \varphi(\mathcal{B})\}$. Then $K^*_{\mathcal{A}} = S$

1. $C(K^*_{\mathcal{A}}) = C(S)(\equiv L_\infty[0,1])$ contains no complemented copy of c_0 (is a Grothendieck space).

2. **Drygier & GP:** c_0 is not complemented in $C(K_{\mathcal{A}})$ though the remainder $K^*_{\mathcal{A}}$ supports a measure.
Example: the measure algebra

- Let $\mathcal{B} = \text{Bor}[0,1]/(\lambda = 0)$; $S = \text{ult}(\mathcal{B})$ is nonseparable and carries a strictly positive measure.

- **Frankiewicz & Gutek:** Under CH, there is an embedding $\varphi : \mathcal{B} \rightarrow P(\omega)/\text{fin}$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- **Dow & Hart:** Under OCA, \mathcal{B} does not embed into $P(\omega)/\text{fin}$.

Example using $\varphi : \mathcal{B} \rightarrow P(\omega)/\text{fin}$

Let $\mathcal{A} = \{ A \subseteq \omega; A^* \in \varphi(\mathcal{B}) \}$. Then $K_{2\mathfrak{l}}^* = S$

1. $C(K_{2\mathfrak{l}}^*) = C(S) (\equiv L_\infty[0,1])$ contains no complemented copy of c_0 (is a Grothendieck space).

2. **Drygier & GP:** c_0 is not complemented in $C(K_{2\mathfrak{l}})$ though the remainder $K_{2\mathfrak{l}}^*$ supports a measure.

3. $C(K_{2\mathfrak{l}})$ contains a complemented copy of c_0, spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.

Our main results

Theorem 1
Assume $p = c$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2
Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly positive measure).

Question
Does there always exist $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and carries a strictly positive measure?

Remark
There is such $\gamma \omega$ if $b = c$ or $\text{cov}(E) = \omega_1$.
Our main results

Theorem 1
Assume $p = c$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2
Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly positive measure).

Question
Does there always exist $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and carries a strictly positive measure?

Remark
There is such $\gamma \omega$ if $b = c$ or $\text{cov}(E) = \omega_1$.
Our main results

Theorem 1
Assume \(p = c \). There is a compactification \(\gamma\omega \) such that \(\gamma\omega \setminus \omega \) is separable and \(c_0 \) is not complemented in \(C(\gamma\omega) \).

Theorem 2
Assume CH. There is a compactification \(\gamma\omega \) such that \(\gamma\omega \setminus \omega \) is nonseparable and \(c_0 \) is complemented in \(C(\gamma\omega) \) (so, in particular, \(\gamma\omega \setminus \omega \) carries a strictly positive measure).

Question
Does there always exist \(\gamma\omega \) such that \(\gamma\omega \setminus \omega \) is nonseparable and carries a strictly positive measure?

Remark
There is such \(\gamma\omega \) if \(b = c \) or \(\text{cov}(E) = \omega_1 \).
Our main results

Theorem 1
Assume $p = c$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2
Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly positive measure).

Question
Does there always exist $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and carries a strictly positive measure?

Remark
There is such $\gamma \omega$ if $b = c$ or $\text{cov}(E) = \omega_1$.
Our main results

<table>
<thead>
<tr>
<th>Theorem 1</th>
<th>Assume $p = c$. There is a compactification $\gamma\omega$ such that $\gamma\omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma\omega)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem 2</td>
<td>Assume CH. There is a compactification $\gamma\omega$ such that $\gamma\omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma\omega)$ (so, in particular, $\gamma\omega \setminus \omega$ carries a strictly positive measure).</td>
</tr>
<tr>
<td>Question</td>
<td>Does there always exist $\gamma\omega$ such that $\gamma\omega \setminus \omega$ is nonseparable and carries a strictly positive measure?</td>
</tr>
<tr>
<td>Remark</td>
<td>There is such $\gamma\omega$ if $b = c$ or $\text{cov}(\mathcal{C}) = \omega_1$.</td>
</tr>
</tbody>
</table>