Banach-Mazur games played with arrows

Wiesław Kubiś

Institute of Mathematics, Academy of Sciences of the Czech Republic
http://www.math.cas.cz/kubis/

Winter School in Abstract Analysis
Section of Set Theory and Topology
Hejnice, 31.01 – 7.02.2015
The setup:

We fix a category \mathbb{K} contained in a bigger category \mathbb{V}, such that all sequences in \mathbb{K} have co-limits in \mathbb{V}.

Example

Let \mathbb{K} be the family $T + (X)$ of all nonempty open subsets of a fixed topological space X. Let \mathbb{V} be the family of all G_δ subsets of X.

W.Kubiš (http://www.math.cas.cz/kubis/)
The setup:

We fix a category \mathcal{K} contained in a bigger category \mathcal{V}, such that all sequences in \mathcal{K} have co-limits in \mathcal{V}.

Example

- Let \mathcal{K} be the family $\mathcal{T}^+(X)$ of all nonempty open subsets of a fixed topological space X.
The setup:

We fix a category \mathcal{K} contained in a bigger category \mathcal{V}, such that all sequences in \mathcal{K} have co-limits in \mathcal{V}.

Example

- Let \mathcal{K} be the family $\mathcal{T}^+(X)$ of all nonempty open subsets of a fixed topological space X.
- Let \mathcal{V} be the family of all G_δ subsets of X.

W.Kubiš (http://www.math.cas.cz/kubis/)
Banach-Mazur games

Definition

The Banach-Mazur game on \mathcal{K} is a game played by two players Eve and Odd, with the following rules:

1. Eve starts the game by choosing an object $K_0 \in \mathcal{K}$;
2. Odd responds by choosing an object $K_1 \in \mathcal{K}$ together with a \mathcal{K}-arrow $f_1: K_0 \rightarrow K_1$;
3. Eve responds by choosing an object $K_2 \in \mathcal{K}$ and a \mathcal{K}-arrow $f_2: K_1 \rightarrow K_2$;
4. and so on...

The result of a play is the co-limit $K_\omega = \lim\{K_n\}_{n \in \omega} \in \text{Obj}(\mathcal{V})$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Playing with arrows
3 February 2015 3 / 16
Banach-Mazur games

Definition

The Banach-Mazur game on \mathcal{K} is a game played by two players Eve and Odd, with the following rules:

1. *Eve* starts the game by choosing an object $K_0 \in \mathcal{K}$;

2. *Odd* responds by choosing an object $K_1 \in \mathcal{K}$ together with a \mathcal{K}-arrow $f_1: K_0 \to K_1$;

3. *Eve* responds by choosing an object $K_2 \in \mathcal{K}$ and a \mathcal{K}-arrow $f_2: K_1 \to K_2$;

4. and so on...

The result of a play is the co-limit $K_\infty = \lim_{n \in \omega} \{K_n\} \in \text{Obj}(\mathcal{V})$.

W.Kubiš (http://www.math.cas.cz/kubis/)

Playing with arrows
Banach-Mazur games

Definition

The Banach-Mazur game on \mathcal{K} is a game played by two players Eve and Odd, with the following rules:

1. Eve starts the game by choosing an object $K_0 \in \mathcal{K}$;
2. Odd responds by choosing an object $K_1 \in \mathcal{K}$ together with a \mathcal{K}-arrow $f_0^1 : K_0 \to K_1$;
3. Eve responds by choosing an object $K_2 \in \mathcal{K}$ and a \mathcal{K}-arrow $f_1^2 : K_1 \to K_2$;
4. and so on...

The result of a play is the co-limit $K_\infty = \lim\{K_n\}_{n \in \omega} \in \text{Obj}(\mathcal{V})$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Playing with arrows

3 February 2015 3 / 16
Banach-Mazur games

Definition

The Banach-Mazur game on \mathcal{K} is a game played by two players Eve and Odd, with the following rules:

1. *Eve* starts the game by choosing an object $K_0 \in \mathcal{K}$;
2. *Odd* responds by choosing an object $K_1 \in \mathcal{K}$ together with a \mathcal{K}-arrow $f_0^1 : K_0 \to K_1$;
3. *Eve* responds by choosing an object $K_2 \in \mathcal{K}$ and a \mathcal{K}-arrow $f_2^1 : K_1 \to K_2$;

and so on...

The result of a play is the co-limit $K_\infty = \lim \{K_n\}_{n \in \omega} \in \text{Obj}(\mathcal{V})$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Playing with arrows
3 February 2015
3 / 16
Banach-Mazur games

Definition
The Banach-Mazur game on \(\mathcal{K} \) is a game played by two players Eve and Odd, with the following rules:

1. Eve starts the game by choosing an object \(K_0 \in \mathcal{K} \);
2. Odd responds by choosing an object \(K_1 \in \mathcal{K} \) together with a \(\mathcal{K} \)-arrow \(f_0^1 : K_0 \to K_1 \);
3. Eve responds by choosing an object \(K_2 \in \mathcal{K} \) and a \(\mathcal{K} \)-arrow \(f_1^2 : K_1 \to K_2 \);
4. and so on...

\[K_0 \to K_1 \to K_2 \to \cdots \]
Banach-Mazur games

Definition

The Banach-Mazur game on \mathcal{K} is a game played by two players Eve and Odd, with the following rules:

1. **Eve** starts the game by choosing an object $K_0 \in \mathcal{K}$;
2. **Odd** responds by choosing an object $K_1 \in \mathcal{K}$ together with a \mathcal{K}-arrow $f_0^1 : K_0 \to K_1$;
3. **Eve** responds by choosing an object $K_2 \in \mathcal{K}$ and a \mathcal{K}-arrow $f_1^2 : K_1 \to K_2$;
4. and so on...

\[K_0 \to K_1 \to K_2 \to \cdots \]

The result of a play is the co-limit

\[K_{\infty} = \lim \{ K_n \}_{n \in \omega} \in \text{Obj}(\mathcal{V}). \]
Definition

Let \mathcal{W} be a class of \mathbf{V}-objects. We say that **Odd wins** if he has a strategy such that no matter how Eve plays, the co-limit of the resulting sequence is isomorphic to some element of \mathcal{W}. Denote this game by $\text{BM}(\mathcal{K}, \mathcal{W})$.
Theorem

Assume Odd has a winning strategy in $BM(\mathcal{R}, \mathcal{W}_n)$, where each \mathcal{W}_n is closed under isomorphisms. Then Odd has a winning strategy in

$$BM(\mathcal{R}, \bigcap_{n \in \omega} \mathcal{W}_n).$$
Definition

Let \mathcal{G} be another category and let $\Phi: \mathcal{G} \to \mathcal{K}$ be a covariant functor. We say that Φ is dominating if

(D1) For every $X \in \text{Obj} (\mathcal{K})$ there is $s \in \text{Obj} (\mathcal{G})$ such that $\mathcal{K}(X, \Phi(s)) \neq \emptyset$.

(D2) Given $s \in \text{Obj} (\mathcal{G})$ and $f \in \mathcal{K}$ with $\Phi(s) = \text{dom}(f)$, there exist $g \in \mathcal{G}$ and $h \in \mathcal{K}$ such that $\Phi(g) = h \circ f$.

We say that a subcategory \mathcal{F} of \mathcal{K} is dominating if the inclusion functor $\Phi: \mathcal{F} \to \mathcal{K}$ is dominating.
Let $\mathcal{W} \subseteq \text{Obj}(\mathcal{V})$ and let $\Phi: \mathcal{G} \to \mathcal{K}$ be a dominating functor. Define \mathcal{U} to be the class of all sequences $\vec{s}: \omega \to \mathcal{G}$ satisfying $\lim(\Phi \circ \vec{s}) \in \mathcal{W}$. Then Odd has a winning strategy in $\text{BM}(\mathcal{K}, \mathcal{W})$ if and only if he has a winning strategy in $\text{BM}(\mathcal{G}, \mathcal{U})$. The same applies to Eve.
Let $\mathcal{K} = \mathcal{T}^+(X)$, where X is a compact Hausdorff space. Let \mathcal{V} be the family of all G_δ subsets of X. Define

$$\mathcal{W} = \{\{x\} : x \in X\}.$$
Example I

Let $\mathcal{K} = \mathcal{T}^+(X)$, where X is a compact Hausdorff space. Let \mathbf{V} be the family of all G_δ subsets of X. Define

$$\mathcal{W} = \{\{x\}: x \in X\}.$$

Theorem (Oxtoby)

Odd has a winning strategy in $\text{BM}(\mathcal{K}, \mathcal{W})$ if and only if X contains a dense completely metrizable subspace.
Definition

A V-object W is **generic** if Odd has a winning strategy in $BM(\mathcal{K}, W)$.
Definition
A \mathbf{V}-object W is generic if Odd has a winning strategy in $\text{BM}(\mathcal{A}, W)$.

Theorem
A generic object, if exists, is unique up to isomorphism.
Theorem

Let W be a generic object and let X be a V-object of the form $X = \lim \{X_n\}_{n \in \omega}$ for some sequence $\{X_n\}_{n \in \omega}$ in K. Then

$$V(X, W) \neq \emptyset.$$
Fraïssé limits

Definition

A Fraïssé class is a class \mathcal{F} of finitely generated models if a fixed first order language, satisfying the following conditions:

1. For every $A, B \in \mathcal{F}$ there is $D \in \mathcal{F}$ such that both A and B can be embedded into D.

2. For every embeddings $f : C \rightarrow A$, $g : C \rightarrow B$ with $C, A, B \in \mathcal{F}$, there exist $E \in \mathcal{F}$ and embeddings $f' : A \rightarrow E$, $g' : B \rightarrow E$ such that

$$f' \circ f = g' \circ g.$$

3. \mathcal{F} has countably many isomorphic types.
Theorem (Fraïssé)

Let \mathcal{F} be a Fraïssé class. Then there exists a unique countably generated model U of the same language as that of \mathcal{F}, having the following properties:

1. Every $E \in \mathcal{F}$ embeds into U.
2. For every finite set $S \subseteq U$ there is an embedding $e: E \rightarrow U$ such that $E \in \mathcal{F}$ and $S \subseteq e[E]$.
3. For every $E \in \mathcal{F}$, for every two embeddings $f, g: E \rightarrow U$ there exists an automorphism $h: U \rightarrow U$ such that $h \circ f = g$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Playing with arrows
3 February 2015 12 / 16
Theorem

Let \mathcal{K} be a category whose objects form a Fraïssé class \mathcal{F} and arrows are embeddings. Let U be the Fraïssé limit of \mathcal{F}. Then Odd has a winning strategy in $BM(\mathcal{K}, U)$.
Example II

Theorem

Let \(\mathcal{K} \) be the category of all nonempty compact metrizable spaces with continuous surjections and assume that the Banach-Mazur game is played with reversed arrows. Then the \(\mathcal{K} \)-generic compact space is the Cantor set.
Theorem

Let \mathcal{K} be the category of all finite metric spaces with isometric embeddings. Then the \mathcal{K}-generic object is the Urysohn universal metric space.
References
