On Nikodym’s Uniform Boundedness Principle

Damian Sobota

Institute of Mathematics, Polish Academy of Sciences

Winter School, Hejnice 2015
A **measure** \(\mu \) on a Boolean algebra \(\mathcal{A} \) is a signed real-valued finitely additive function of finite variation.

Theorem (Nikodym’s Uniform Boundedness Principle '30)

If \(\mathcal{A} \) is a \(\sigma \)-algebra, then every pointwise bounded sequence of measures on \(\mathcal{A} \) is uniformly bounded.
A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

A sequence of measures $\langle \mu_n : n < \omega \rangle$ is

- **pointwise bounded** if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

A sequence of measures $\langle \mu_n : n < \omega \rangle$ is

- pointwise bounded if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.
A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

A sequence of measures $\langle \mu_n : n < \omega \rangle$ is

- **pointwise bounded** if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
- **uniformly bounded** if $\sup_n \|\mu_n\| < \infty$.

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.
Nikodym’s Uniform Boundedness Principle

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

A sequence of measures $\langle \mu_n : n < \omega \rangle$ is

- **pointwise bounded** if $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$,
- **uniformly bounded** if $\sup_n \|\mu_n\| < \infty$.

Theorem (Nikodym’s Uniform Boundedness Principle ’30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz
A sequence $\langle \mu_n : n < \omega \rangle$ on A is \textit{anti-Nikodym} if it is pointwise bounded on A but not uniformly bounded.

Definition
The Nikodym Property

Definition
A sequence $\langle \mu_n : n < \omega \rangle$ on \mathcal{A} is anti-Nikodym if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition
An infinite Boolean algebra \mathcal{A} has the Nikodym property (N) if there are no anti-Nikodym sequences on \mathcal{A}.
The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30)

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N): if $x_n \rightarrow x$, then put $\mu_n = n(\delta_{x_n} - \delta_x)$.
The Nikodym Property

Notable examples

- σ-algebras (Nikodym ’30),
- algebras with Subsequential Completeness Property (Haydon ’81)
The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of $[0, 1]$ (Schachermayer '82; generalized by Wheeler & Graves '83).
The Nikodym Property

<table>
<thead>
<tr>
<th>Notable examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>- σ-algebras (Nikodym '30),</td>
</tr>
<tr>
<td>- algebras with Subsequential Completeness Property (Haydon '81),</td>
</tr>
<tr>
<td>- the algebra of Jordan measurable subsets of $[0, 1]$ (Schachermayer '82; generalized by Wheeler & Graves '83).</td>
</tr>
</tbody>
</table>

However, if the Stone space $K_\mathcal{A}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N):

if $x_n \to x$, then put $\mu_n = n(\delta_{x_n} - \delta_x)$
All *the notable examples* are of cardinality at least \mathfrak{c}.
The Nikodym Number

All *the notable examples* are of cardinality at least c.

Question

Is there an infinite Boolean algebra with (N) and cardinality less than c?
All the notable examples are of cardinality at least \mathfrak{c}.

Question

Is there an infinite Boolean algebra with (N) and cardinality less than \mathfrak{c}?

The Nikodym number

$$n = \min \{|A| : \text{infinite } A \text{ has (N)}\}.$$
All the notable examples are of cardinality at least \mathfrak{c}.

Question

Is there an infinite Boolean algebra with (N) and cardinality less than \mathfrak{c}?

The Nikodym number

$n = \min\{|A| : \text{infinite } A \text{ has (N)}\}$.

If $|A| = \omega$, then $K_A \subseteq 2^\omega$, so A does not have (N). Thus:

$$\omega_1 \leq n \leq \mathfrak{c}.$$
The first bound – the splitting number s

If the Stone space K_A of A has a convergent sequence, then A does not have (N).
The first bound – the splitting number s

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

The splitting number

$\mathcal{F} \subseteq [\omega]^\omega$ is **splitting** if for every $A \in [\omega]^\omega$ there exists $B \in \mathcal{F}$ such that:

$$A \cap B \in [\omega]^\omega \quad \text{and} \quad A \setminus B \in [\omega]^\omega.$$

$$s = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^\omega \text{ is splitting}\}.$$
The first bound – the splitting number s

If the Stone space K_A of A has a convergent sequence, then A does not have (N).

The splitting number

$\mathcal{F} \subseteq [\omega]^\omega$ is **splitting** if for every $A \in [\omega]^\omega$ there exists $B \in \mathcal{F}$ such that:

$$A \cap B \in [\omega]^\omega \quad \text{and} \quad A \setminus B \in [\omega]^\omega.$$

$s = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^\omega \text{ is splitting}\}$.

Theorem (Booth ’74)

$s = \min\{\kappa : \text{there is a compactum } X \text{ of weight } w(X) = \kappa \text{ which is not sequentially compact}\}$.
The first bound – the splitting number \mathcal{S}

If the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N).

The splitting number

$\mathcal{F} \subseteq [\omega]^{\omega}$ is **splitting** if for every $A \in [\omega]^{\omega}$ there exists $B \in \mathcal{F}$ such that:

$$A \cap B \in [\omega]^{\omega} \quad \text{and} \quad A \setminus B \in [\omega]^{\omega}.$$

$$\mathcal{S} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \text{ is splitting}\}.$$

Theorem (Booth ’74)

$$\mathcal{S} = \min\{\kappa : \text{there is a compactum } X \text{ of weight } w(X) = \kappa \text{ which is not sequentially compact}\}.$$

Corollary

$$\mathcal{S} \leq \aleph_0.$$
The second bound – the bounding number b

$f \in \omega^\omega$ dominates $g \in \omega^\omega$ if $g(n) < f(n)$ for all but finitely many $n \in \omega$.

$\mathcal{F} \subseteq \omega^\omega$ is dominating if every $f \in \omega^\omega$ is dominated by some $g \in \mathcal{F}$.

\mathcal{F} is unbounded if there is no $f \in \omega^\omega$ dominating every $g \in \mathcal{F}$.

\[b = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is dominating} \} \]

\[d = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is unbounded} \} \]

Proposition $b \leq n$.

Damian Sobota

On Nikodym’s Uniform Boundedness Principle
The second bound – the bounding number b

$f \in \omega^\omega$ dominates $g \in \omega^\omega$ if $g(n) < f(n)$ for all but finitely many $n \in \omega$.

$\mathcal{F} \subseteq \omega^\omega$ is dominating if every $f \in \omega^\omega$ is dominated by some $g \in \mathcal{F}$.

\mathcal{F} is unbounded if there is no $f \in \omega^\omega$ dominating every $g \in \mathcal{F}$.

$d = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is dominating}\}$.

$b = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is unbounded}\}$.
The second bound – the bounding number b

$f \in \omega^\omega$ dominates $g \in \omega^\omega$ if $g(n) < f(n)$ for all but finitely many $n \in \omega$.

$\mathcal{F} \subseteq \omega^\omega$ is dominating if every $f \in \omega^\omega$ is dominated by some $g \in \mathcal{F}$.

\mathcal{F} is unbounded if there is no $f \in \omega^\omega$ dominating every $g \in \mathcal{F}$.

$d = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is dominating}\}$.

$b = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^\omega \text{ is unbounded}\}$.

Proposition

$b \leq n$.

Damian Sobota
On Nikodym's Uniform Boundedness Principle
Barrelled argument

All metrizable barrelled spaces have dimension at least \mathfrak{b}. (Saxon–Sanchez-Ruiz ’96)
Barrelled argument

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz ’96)

If A has (N), then the space of all simple functions on K_A is barrelled. (Schachermayer ’82).
The second bound – the bound number b

Barrelled argument

All metrizable barrelled spaces have dimension at least b.
(Saxon–Sanchez-Ruiz ’96)

If \mathcal{A} has (N), then the space of all simple functions on $K_{\mathcal{A}}$ is barrelled.
(Schachermayer ’82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$.
Barreled argument

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz ’96)

If \mathcal{A} has (N), then the space of all simple functions on $K_\mathcal{A}$ is barrelled. (Schachermayer ’82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < b$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$.

The second bound – the bound number b

Damian Sobota

On Nikodym’s Uniform Boundedness Principle
The second bound – the bound number \mathfrak{b}

Barrelled argument

All metrizable barrelled spaces have dimension at least \mathfrak{b}. (Saxon–Sanchez-Ruiz '96)

If \mathcal{A} has (N), then the space of all simple functions on $K_{\mathcal{A}}$ is barrelled. (Schachermayer '82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < \mathfrak{b}$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$. Put $\nu_n = \mu_n / c_n$.

Damian Sobota
On Nikodym’s Uniform Boundedness Principle
The second bound – the bound number b

Barrelled argument

All metrizable barrelled spaces have dimension at least b. (Saxon–Sanchez-Ruiz ’96)

If \mathcal{A} has (N), then the space of all simple functions on $K_{\mathcal{A}}$ is barrelled. (Schachermayer ’82).

Constructive argument

By the Josefson–Nissenzweig theorem there exists a sequence $\langle \mu_n : n < \omega \rangle$ such that $\|\mu_n\| = 1$ and $\mu_n(a) \to 0$ for every $a \in \mathcal{A}$. If $|\mathcal{A}| < b$, then there exists $c \in c_0$ dominating $\langle |\mu_n(a)| : n < \omega \rangle$ for every $a \in \mathcal{A}$.

Put $\nu_n = \mu_n / c_n$.

$\langle |\nu_n(a)| : n < \omega \rangle$ is bounded for every $a \in \mathcal{A}$ but $\|\nu_n\| \to \infty$.
The lower bounds

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \geq \max(b, s)$.</td>
</tr>
</tbody>
</table>
The lower bounds

Corollary

\[n \geq \max(b, s). \]

Theorem (Balcar–Pelant–Simon ’80)

It is consistent that \(\omega_1 = s < b \). (Hence, it is consistent that \(s < n \)).

Note that \(d = \max(b, s) \).

Also note that under Martin’s axiom \(b = s = d = c \), hence \(n = d \) under MA.

Question

Is it consistent that \(n < d \)?
The lower bounds

<table>
<thead>
<tr>
<th>Corollary</th>
<th>(n \geq \max(b, s)).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Theorem (Balcar–Pelant–Simon ’80)</th>
<th>It is consistent that (\omega_1 = s < b). (Hence, it is consistent that (s < n)).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Theorem (Shelah ’84)</th>
<th>It is consistent that (\omega_1 = b < s = \omega_2). (Hence, it is consistent that (b < n)).</th>
</tr>
</thead>
</table>
Corollary

\[n \geq \max(b, s). \]

Theorem (Balcar–Pelant–Simon ‘80)

It is consistent that \(\omega_1 = s < b \). *(Hence, it is consistent that* \(s < n \).*

Theorem (Shelah ‘84)

It is consistent that \(\omega_1 = b < s = \omega_2 \). *(Hence, it is consistent that* \(b < n \).*

Note that \(d \geq \max(b, s) \).
The lower bounds

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \geq \max(b, s)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Balcar–Pelant–Simon ’80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is consistent that $\omega_1 = s < b$. (Hence, it is consistent that $s < n$).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Shelah ’84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is consistent that $\omega_1 = b < s = \omega_2$. (Hence, it is consistent that $b < n$).</td>
</tr>
</tbody>
</table>

Note that $\mathfrak{d} \geq \max(b, s)$. Also note that under Martin’s axiom $b = s = \mathfrak{d} = \mathfrak{c}$, hence $n = \mathfrak{d}$ under MA.
The lower bounds

Corollary

\[n \geq \max(b, s). \]

Theorem (Balcar–Pelant–Simon ’80)

It is consistent that \(\omega_1 = s < b \). (*Hence, it is consistent that* \(s < n \)).

Theorem (Shelah ’84)

It is consistent that \(\omega_1 = b < s = \omega_2 \). (*Hence, it is consistent that* \(b < n \)).

Note that \(d \geq \max(b, s) \). Also note that under Martin’s axiom \(b = s = d = c \), hence \(n = d \) under MA.

Question

Is it consistent that \(n < d \)?
\mathcal{N} – the Lebesgue null ideal

$$\text{cof}(\mathcal{N}) = \min\{|F| : F \subseteq \mathcal{N} \text{ – cofinal: } \forall A \in \mathcal{N} \exists B \in F : A \subseteq B\}$$
Algebra with (N) and cardinality ω_1

\mathcal{N} – the Lebesgue null ideal

$\text{cof}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} – \text{cofinal: } \forall A \in \mathcal{N} \exists B \in \mathcal{F} : A \subseteq B\}$

Note that $\omega_1 \leq \varnothing \leq \text{cof}(\mathcal{N}) \leq c$.
\mathcal{N} – the Lebesgue null ideal

$$\operatorname{cof}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} - \text{cofinal: } \forall A \in \mathcal{N} \exists B \in \mathcal{F} : A \subseteq B\}$$

Note that $\omega_1 \leq \mathfrak{d} \leq \operatorname{cof}(\mathcal{N}) \leq \mathfrak{c}$.

Theorem (D.S.)

Assume that $\operatorname{cof}(\mathcal{N}) = \kappa$ for a cardinal number $\kappa < \mathfrak{c}$ such that $\operatorname{cof}([\kappa]^\omega) = \kappa$.
\(\mathcal{N} \) – the Lebesgue null ideal

\[
\text{cof}(\mathcal{N}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N} - \text{cofinal: } \forall A \in \mathcal{N} \exists B \in \mathcal{F} : A \subseteq B\}
\]

Note that \(\omega_1 \leq \mathfrak{d} \leq \text{cof}(\mathcal{N}) \leq c \).

Theorem (D.S.)

Assume that \(\text{cof}(\mathcal{N}) = \kappa \) for a cardinal number \(\kappa < c \) such that \(\text{cof}([\kappa]^{\omega}) = \kappa \). Then, there exists a Boolean algebra \(\mathcal{B} \) with the Nikodym property and cardinality \(\kappa \).
Algebra with (N) and cardinality ω_1

\mathcal{N} – the Lebesgue null ideal

$$\text{cof}(\mathcal{N}) = \min\{|F| : F \subseteq \mathcal{N} - \text{cofinal}: \forall A \in \mathcal{N} \exists B \in F : A \subseteq B\}$$

Note that $\omega_1 \leq \mathfrak{d} \leq \text{cof}(\mathcal{N}) \leq c$.

Theorem (D.S.)

Assume that $\text{cof}(\mathcal{N}) = \kappa$ for a cardinal number $\kappa < c$ such that $\text{cof}([\kappa]^{\omega}) = \kappa$. Then, there exists a Boolean algebra \mathcal{B} with the Nikodym property and cardinality κ.

So, if κ as above and $\text{cof}(\mathcal{N}) = \kappa$, then $\mathfrak{n} \leq \text{cof}(\mathcal{N})$.
Main Lemma

If $\text{cof}(\mathcal{N}) = \kappa$, then for every countable Boolean algebra \mathcal{A} there exists a family $\{\langle a_\gamma^n \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

For every anti-Nikodym sequence of measures $\langle \mu_n : n < \omega \rangle$ there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k : k < \omega \rangle$ of naturals such that for every $k < \omega$ the following inequality is satisfied:

$$|\mu_{n_k} a_\gamma^n| > k - 1 \sum_{j=0}^{k} |\mu_{n_k} a_\gamma^j| + k + 1.$$
Main Lemma

If \(\text{cof}(\mathcal{N}) = \kappa \), then for every countable Boolean algebra \(\mathcal{A} \) there exists a family \(\{ \langle a_\gamma^n \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa \} \) of \(\kappa \) many antichains in \(\mathcal{A} \) with the following property:

for every anti-Nikodym sequence of measures \(\langle \mu_n : n < \omega \rangle \) there exist \(\gamma < \kappa \) and an increasing sequence \(\langle n_k : k < \omega \rangle \) of naturals such that for every \(k < \omega \) the following inequality is satisfied:

\[
|\mu_{n_k} a_k^\gamma| > \sum_{j=0}^{k-1} |\mu_{n_k} a_j^\gamma| + k + 1.
\]
Consequence – cofinality of Boolean algebras

Definition

\[\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}\} . \]

Theorem (Koppelberg '77)

\[\omega / \leq \text{cof}(\mathcal{A}) / \leq c \]

Theorem (Just–Koszmider '91)

In the Sacks model there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1 \).

Theorem (Pawlikowski–Ciesielski '02)

Assuming \(\text{cof}(\mathcal{N}) = \omega_1 \), there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1 \).
Consequence – cofinality of Boolean algebras

Definition

\[\text{cof}(\mathcal{A}) = \min \{ \kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow \mathcal{A} \} \].

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(\mathcal{A}) \leq c \),
Consequence – cofinality of Boolean algebras

Definition

\[\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}\}. \]

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(\mathcal{A}) \leq \mathfrak{c}, \)
2. (MA) If \(|\mathcal{A}| < \mathfrak{c}, \) then \(\text{cof}(\mathcal{A}) = \omega. \)
Consequence – cofinality of Boolean algebras

Definition
cof(\mathcal{A}) = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \uparrow \mathcal{A}\}.

Theorem (Koppelberg ’77)
1. \omega \leq \text{cof}(\mathcal{A}) \leq c,
2. (MA) If |\mathcal{A}| < c, then cof(\mathcal{A}) = \omega.

Theorem (Just–Koszmider ’91)
In the Sacks model there exists a Boolean algebra \mathcal{B} such that |\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1.
Consequence – cofinality of Boolean algebras

Definition

\[\text{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle A_\xi : \xi < \kappa \rangle \nearrow \mathcal{A}\} \].

Theorem (Koppelberg ’77)

1. \(\omega \leq \text{cof}(\mathcal{A}) \leq c \),
2. \((\text{MA})\) If \(|\mathcal{A}| < c \), then \(\text{cof}(\mathcal{A}) = \omega \).

Theorem (Just–Koszmider ’91)

In the Sacks model there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1 \).

Theorem (Pawlikowski–Ciesielski ’02)

Assuming \(\text{cof}(\mathcal{N}) = \omega_1 \), there exists a Boolean algebra \(\mathcal{B} \) such that \(|\mathcal{B}| = \text{cof}(\mathcal{B}) = \omega_1 \).
Theorem (Schachermayer ’82)

If \mathcal{A} has the Nikodym property, then $\text{cof}(\mathcal{A}) > \omega$.

Corollary

Assuming $\text{cof}(\mathcal{N}) = \kappa$ for κ such that $\text{cof}(\kappa \omega) = \kappa$, there exists a Boolean algebra with cardinality κ and cofinality ω_1.

Question

Is there a consistent example of a Boolean algebra \mathcal{B} for which $\omega_1 < \text{cof}(\mathcal{B}) < \text{c}$?
Theorem (Schachermayer ’82)

If A has the Nikodym property, then $\text{cof}(A) > \omega$.

Corollary

Assuming $\text{cof}(\mathcal{N}) = \kappa$ for κ such that $\text{cof}([\kappa]^\omega) = \kappa$, there exists a Boolean algebra with cardinality κ and cofinality ω_1.
Theorem (Schachermayer ’82)

If A has the Nikodym property, then $\text{cof}(A) > \omega$.

Corollary

Assuming $\text{cof}(\mathcal{N}) = \kappa$ for κ such that $\text{cof}([\kappa]^{\omega}) = \kappa$, there exists a Boolean algebra with cardinality κ and cofinality ω_1.

Question

Is there a consistent example of a Boolean algebra B for which $\omega_1 < \text{cof}(B) < c$?
Definition

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta \omega$.
Consequence – the Efimov problem

Definition
An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem ’69
Does there exist a Efimov space?
Definition

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem ’69

Does there exist a Efimov space?

Fedorčuk: CH, \diamondsuit, $s = \omega_1$ & $c = 2^{\omega_1}$

Dow: $\text{cof}([s]^{\omega}) = s$ & $2^s < 2^c$

and many more...
Definition

An infinite compact Hausdorff space is a **Efimov space** if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem ’69

Does there exist a Efimov space?

Fedorčuk: CH, \diamondsuit, $s = \omega_1$ & $c = 2^{\omega_1}$

Dow: $\text{cof}([s]^{\omega}) = s$ & $2^s < 2^c$

and many more...

Theorem (Pawlikowski–Ciesielski ’02, D.S.)

Assuming $\text{cof}(\mathcal{N}) = \omega_1$, **there exists a Efimov space.**
Thank you for your attention.