ON NIKODYM'S UNIFORM BOUNDEDNESS PRINCIPLE

DAMIAN SOBOTA

An infinite Boolean algebra \mathcal{A} is said to have the Nikodym property provided that every sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} which is pointwise bounded (ie. $\sup_n |\mu_n a| < \infty$ for every $a \in \mathcal{A}$) is uniformly bounded (ie. $\sup_n ||\mu_n|| < \infty$). It is known that such an algebra cannot have cardinality less than $\max(\mathfrak{b}, \mathfrak{s})$ where \mathfrak{b} and \mathfrak{s} are respectively the bounding number and the splitting number. However, all the known so far examples of algebras with the Nikodym property have cardinality not less than the continuum \mathfrak{c} . Assuming that the cofinality of the Lebesgue null ideal is ω_1 , I will provide a brief sketch of an argument leading to the construction of a Boolean algebra with the Nikodym property and cardinality ω_1 . This gives a new example of an algebra with cofinality ω_1 as well as contributes a new consistent counterexample to the Efimov problem.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES *E-mail address*: damian.sobota@impan.pl