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@ A graph G is a pair (V, E), where V is a non empty set and
E C [V]?. In this talk | always use this notation.
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E C [V]?. In this talk | always use this notation. An element of V is
called a vertex and elements of E are edges. We say that vertex v is
adyacent to v iff {u, v} € E.
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E C [V]?. In this talk | always use this notation. An element of V is
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@ We could think a graph as a set of vertices and an irreflexive and
symmetric relation.
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@ A graph G is a pair (V, E), where V is a non empty set and
E C [V]?. In this talk | always use this notation. An element of V is
called a vertex and elements of E are edges. We say that vertex v is
adyacent to v iff {u, v} € E.

@ We could think a graph as a set of vertices and an irreflexive and
symmetric relation.

@ Graphs that we consider are graphs on Polish spaces (V is a Polish
space).

@ A coloring is a function ¢ : V — k s.t. c(u) # c(v) if u is adyacent to
v. In that case we say that c is a coloring with k colors.
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A graph G is a pair (V, E), where V is a non empty set and

E C [V]?. In this talk | always use this notation. An element of V is
called a vertex and elements of E are edges. We say that vertex v is
adyacent to v iff {u, v} € E.

@ We could think a graph as a set of vertices and an irreflexive and
symmetric relation.

@ Graphs that we consider are graphs on Polish spaces (V is a Polish
space).

@ A coloring is a function ¢ : V — k s.t. c(u) # c(v) if u is adyacent to
v. In that case we say that c is a coloring with k colors.

@ Note that always there exists colorings for every graph because we
could put k = |V/.
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@ The chromatic number of a graph G is the minimum k such that
there exists a coloring with k colors and we detone it by x(G).
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@ The chromatic number of a graph G is the minimum k such that
there exists a coloring with k colors and we detone it by x(G).

@ The Borel chromatic number of a graph G is the minimun k for that
exists a Borel coloring with k colors. We are thinking k with the
discrete topology and denote the Borel chromatic number of G by

x8(G).
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@ The chromatic number of a graph G is the minimum k such that
there exists a coloring with k colors and we detone it by x(G).

@ The Borel chromatic number of a graph G is the minimun k for that
exists a Borel coloring with k colors. We are thinking k with the
discrete topology and denote the Borel chromatic number of G by

x8(G).

@ The idea of this talk is present Borel versions of theorems regarding
the chromatic number. It was extracted from an article due to
Kechris, Solecki and Todorcevic.
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Proposition (finite version)

Let G be a finite graph. If every vertex in G has at most n adyacent
vertices then x(G) < n+ 1.
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Proposition (finite version)

Let G be a finite graph. If every vertex in G has at most n adyacent
vertices then x(G) < n+ 1.

Proof

@ By induction over n. The case n = 0 is obvious because we have a
graph without edges.

o
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Proposition (finite version)

Let G be a finite graph. If every vertex in G has at most n adyacent
vertices then x(G) < n+ 1.

Proof

@ By induction over n. The case n = 0 is obvious because we have a
graph without edges.
@ For n > 0 we enumerate V = {v; : i € |V|} and define A; for i € | V|
as follows:
A() = {Vo}.
Air1 = AiU{vii1} if viyq is not adyacent to any vertex in A; and
A1 = A; in other case.
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Proposition (finite version)

Let G be a finite graph. If every vertex in G has at most n adyacent
vertices then x(G) < n+ 1.

Proof

@ By induction over n. The case n = 0 is obvious because we have a
graph without edges.
@ For n > 0 we enumerate V = {v; : i € |V|} and define A; for i € | V|
as follows:
AO = {Vo}.
Air1 = AiU{vii1} if viyq is not adyacent to any vertex in A; and
A1 = A; in other case.
@ Every vertex in G is in Ajy|_; or has an edge with some vertex in
Ajv|-1- Then we could color Ajy|_; with one color and apply
induction hypothesis to G — Ajy|_;. B
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Proposition (finite version)

Let G be a finite graph. If every vertex in G has at most n adyacent
vertices then x(G) < n+ 1.

Proof

@ By induction over n. The case n = 0 is obvious because we have a
graph without edges.
@ For n > 0 we enumerate V = {v; : i € |V|} and define A; for i € | V|
as follows:
AO = {Vo}.
Air1 = AiU{vii1} if viyq is not adyacent to any vertex in A; and
A1 = A; in other case.
@ Every vertex in G is in Ajy|_; or has an edge with some vertex in
Ajv|-1- Then we could color Ajy|_; with one color and apply
induction hypothesis to G — Ajy|_;. B

@ Remark: in ZFC x(G) < niff x(F) < n for every finite subgraph (De

Bruijn—Erdés theorem). So we have an infinite version of the theorem.
v
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Proposition (Borel version) (Kechis,Solecki and Todorcevic)

Let G be a graph. If every vertex in G has at most n adyacent vertices and
ElY]={veV:(3yeY){v,y} € E)} is Borel for every Borel set
Y C V, then xg(G) < n+ 1.
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Let G be a graph. If every vertex in G has at most n adyacent vertices and
ElY]={veV:(3yeY){v,y} € E)} is Borel for every Borel set
Y C V, then xg(G) < n+ 1.

Proof

@ It's not hard to see that there exists a Borel coloring with w colors for
G using that the topology is second countable.
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Proposition (Borel version) (Kechis,Solecki and Todorcevic)

Let G be a graph. If every vertex in G has at most n adyacent vertices and
ElY]={veV:(3yeY){v,y} € E)} is Borel for every Borel set
Y C V, then xg(G) < n+ 1.

Proof
@ It's not hard to see that there exists a Borel coloring with w colors for
G using that the topology is second countable.

@ The proof is the same as in the finite version but we need to
construct a Borel independent set in another way. Take a partition of
independent sets {B, : n € w} which is possible because x5(G) < w.

Define:
Ay = Bo.
An+1 =AU (Bn+1 \ E[An])-
A=, A,
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Proposition (Borel version) (Kechis,Solecki and Todorcevic)
Let G be a graph. If every vertex in G has at most n adyacent vertices and

ElY]={ve V:(dyeY){v,y} € E)} is Borel for every Borel set
Y C V, then xg(G) < n+ 1.

Proof
@ It's not hard to see that there exists a Borel coloring with w colors for
G using that the topology is second countable.

@ The proof is the same as in the finite version but we need to
construct a Borel independent set in another way. Take a partition of
independent sets {B, : n € w} which is possible because x5(G) < w.

Define:
Ay = Bo.
An+1 =AU (Bn+1 \ E[An])-
A=, A,

@ Using induction and extending the topology s.t. A becomes clopen we
finish the proof. B
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Some remarks

@ The previous version of the theorem is the best posible, for example in
Knt1 the bigger degree is n and x(Kn4+1) = n+ 1 but there are
graphs in which every vertex has infinite degree and x(B) is finite.
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Some remarks

@ The previous version of the theorem is the best posible, for example in
Knt1 the bigger degree is n and x(Kn4+1) = n+ 1 but there are
graphs in which every vertex has infinite degree and x(B) is finite.

@ Given a function f : V — V, G = (V, E) where uEv iff u # v and
f(uy=vorf(v)=u.
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Proposition

Let f : V — V be a function. Then x(Gr) <3

=
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Proposition
Let f : V — V be a function. Then x(Gr) <3

Proof
@ When |V/| € w we do the proof by induction. For |V| < 3 is obvious.
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Proposition
Let f: V — V be a function. Then x(Gf) <3

Proof
@ When |V/| € w we do the proof by induction. For |V| < 3 is obvious.

@ Suppose |V| > 3. There is a vertex u of degree 0, 1 or 2 by
pigeonhole principle.
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Proposition
Let f: V — V be a function. Then x(Gr) <3

Proof
@ When |V/| € w we do the proof by induction. For |V| < 3 is obvious.

@ Suppose |V| > 3. There is a vertex u of degree 0, 1 or 2 by
pigeonhole principle.

o If we remove u from G we use hypothesis induction (maybe some
f(v) = u and in that case we modify f|V \ u), then we can paint
G — v with three colors. It's easy to color V with three colors.
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Proposition
Let f: V — V be a function. Then x(Gr) <3

Proof
@ When |V/| € w we do the proof by induction. For |V| < 3 is obvious.

@ Suppose |V| > 3. There is a vertex u of degree 0, 1 or 2 by
pigeonhole principle.

o If we remove u from G we use hypothesis induction (maybe some
f(v) = u and in that case we modify f|V \ u), then we can paint
G — v with three colors. It's easy to color V with three colors.

@ If V is infinite we use again the compactness theorem.ll
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Proposition (Borel version) (Kechris, Solecki and Todorcevic) (proof
by Palamourdas)

Let f: V — V be a Borel function. Then xg(Gr) < 3 or xg(Gr) = w
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Proposition (Borel version) (Kechris, Solecki and Todorcevic) (proof
by Palamourdas)

Let f : V — V be a Borel function. Then xg(Gr) < 3 or xg(Gr) =w

Proof
@ It's not hard to see that there exists a Borel coloring with w colors for
Gr.
@ Suppose that xg(Gr) < w and take a Borel partition Ag, A1, ..., Ap—1
for some n.
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Proposition (Borel version) (Kechris, Solecki and Todorcevic) (proof
by Palamourdas)

Let f : V — V be a Borel function. Then xg(Gr) < 3 or xg(Gr) =w

Proof
@ It's not hard to see that there exists a Borel coloring with w colors for
Gr.
@ Suppose that xg(Gr) < w and take a Borel partition Ag, A1, ..., Ap—1
for some n.

@ Define recursively B; and C; as follows:
Bo = Ao and Co S (Z),
B,'+1 = B; U {X € A,'+1 : f(X) ¢ B,} and
C;+1 =GuU {X € A,'+1 : f(X) € B,}
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Proposition (Borel version) (Kechris, Solecki and Todorcevic) (proof
by Palamourdas)

Let f : V — V be a Borel function. Then xg(Gr) < 3 or xg(Gr) =w

Proof
@ It's not hard to see that there exists a Borel coloring with w colors for
Gr.
@ Suppose that xg(Gr) < w and take a Borel partition Ag, A1, ..., Ap—1
for some n.
@ Define recursively B; and C; as follows:
By = Ap and Gy = 0,
Bii1 = BiU{x € Ai11: f(x) ¢ B} and
Cir1=GCGU{xe A :f(x) e B}
@ Llet B=B,_1and C = C,_1. Note that V = BU C and B and C are
Borel. Our claim is that C is independent and B could be colored by
two colors.
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Proof of claim

@ Suppose f(u) =vand u# v. u€ A; and v € Aj and i # j because
{Aj :i € n} is a coloring.
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Proof of claim
@ Suppose f(u) =vand u# v. u€ A; and v € Aj and i # j because
{A; :i € n} is a coloring.
o If ue C then f(u) € Bi_1 and so v ¢ C. We conclude that C is an
independent set.
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Proof of claim
@ Suppose f(u) =vand u# v. u€ A; and v € Aj and i # j because
{Aj i € n} is a coloring.
o If ue C then f(u) € Bi_1 and so v ¢ C. We conclude that C is an
independent set.
@ For u € B there are three cases:
For every k f%(u) € B and f"~1(u) = f"(u) for some n.

For every k f%(u) € B and f"~1(u) # f"(u) for every n.
There exists ns.t. f"(u) € C.
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Proof of claim
@ Suppose f(u) =vand u# v. u€ A; and v € Aj and i # j because
{Aj i € n} is a coloring.
o If u e C then f(u) € Bi_1 and so v ¢ C. We conclude that C is an
independent set.
@ For u € B there are three cases:
For every k f“(u) € B and f"~1(u) = f"(u) for some n.
For every k f%(u) € B and f"~1(u) # f"(u) for every n.
There exists ns.t. f"(u) € C.
@ In first and third case we define c(u) = n modulo 2, c(u) =2 if
u € C. The second case is imposible so we finish the proof.
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Final words

@ There is a Borel space V and Borel function F : V — V s.t.
x8(GF) = w.
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Final words

@ There is a Borel space V and Borel function F : V — V s.t.
x8(GF) = w.

@ We can define Gg.icpy and then x(Gyf.icny) < 2n+ 1. Is it true that
xB(Gyf:icny) < 2n+1 or xB(Gyf.icny) = w for Borel functions?
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Final words

@ There is a Borel space V' and Borel function F: V — V s.t.
xB(GF) = w.

@ We can define Gg.icpy and then x(Gyf.icny) < 2n+ 1. Is it true that
X8(Gyf.ieny) < 2n+ 1 or xg(Gyf.icny) = w for Borel functions?

@ There is an analoguous definition for coloring of edges and Vizing's
theorem says that whenever every vertex has at most n degree then
X'(G) € {n,n+ 1}. Is it true for Borel colorings?
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