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Introduction

First ideas:
@ Sorgenfrey line: convergence < convergence from the right,
@ generalize this: convergence < convergence from given directions.
o What topologies capture this property?
Classical constructions:
e the cross-topology on R?,
e the radiolar-topology on R?,
@ the cross-topology on X x Y.

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010



Results and concerns from the literature

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):

@ separation axioms: the usual failure of T3,

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):
@ separation axioms: the usual failure of T3,

@ density, covering properties,

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):
@ separation axioms: the usual failure of T3,
@ density, covering properties,

@ connectivity.

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):
@ separation axioms: the usual failure of T3,
@ density, covering properties,
@ connectivity.

The question of regularity:

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):
@ separation axioms: the usual failure of T3,
@ density, covering properties,
@ connectivity.
The question of regularity:
@ regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 3/16



Results and concerns from the literature

Investigating basic topological properties (late 60’s):
@ separation axioms: the usual failure of T3,
@ density, covering properties,
@ connectivity.
The question of regularity:
@ regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),

@ conditions which ensure regularity, normality for the cross-topology on
X x Y. (Hart-Kunen (2002))
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The S-radiolar topologies on R?

Defining the S-radiolar open sets

A general idea of refining (notion from R. Brown):

o take a space (X, 7),
o take any family & of subsets of X,
o let 7¢ = {U C X : UN E is relatively open in E for all E € £}.

Let S C S! be a set of unit vectors, usually called directions.

Definition

The set U C R? is S-radiolar open iff for every x € U and every s € S
there is a line segment in direction s in U which contains x. Let R(S)
denote this topology.
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Basics

Two special and two trivial cases:

@ cross topology,

o for S = S? the radiolar topology,

e for S = {s} R(S) is the disjoint union of c-many Sorgenfrey lines,

o for S = {s,—s} R(S) is the disjoint union of ¢-many Euclidean lines.
Simple properties for a nontrivial R(S) space:

@ What is the convergence we have?

@ The R(S) spaces are Hausdorff and separable.

@ There always exists a closed discrete subset in R(S) of cardinality
¢, hence these spaces are non normal, non Lindelf, non hereditaraly
separable.
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The character of R(S)

By generalizing a proof of Hart and Kunen:

For nontrivial S C S we have \(R(S)) = 2°.

Thus R(S) is non regular since for any regular space X: w(X) < 29(X),
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Properties depending on S

Connectedness

Definition

A set S C S is splayed iff it cannot be covered by a closed half circle, S
contains a full direction is there is a s € S such that {s,—s} C S.

e R(S) is connected iff S is splayed.

@ There exists an uncountable compact subspace in R(S) iff there is a
full direction in S.

e R(S) is pathwise connected iff there are at least two full
directions in S.
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Properties depending on S

The symmetry of S

Proposition
For symmetric and non-symmetric S sets the corresponding R(S)
topologies are non homeomorphic.

A space X is symmetrizable iff there is a symmetricd : X x X — R on
X:

Q forallx,y € X:d(x,y)=d(y,x) >0,

Q d(x,y)=0&x=y,
such that U C X is open iff for any x € U there is a € > 0 such that
B(x,e) ={y € X:d(x,y) <e} C U.
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Properties depending on S
The symmetry of S

Proposition

For symmetric and non-symmetric S sets the corresponding R(S)
topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetricd : X x X — R on
X:

Q forallx,y € X:d(x,y)=d(y,x) >0,
Q d(x,y)=0&x=y,

such that U C X is open iff for any x € U there is a € > 0 such that
B(x,e) ={y e X :d(x,y) <e} C U.

\

Proposition

The space R(S) is symmetrizable < S is finite and symmetric.
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For a space (X, T) and a point x € X a family of closed sets is a weak
base at x iff

e x5,

o for every x € U C X the set U is open iff U\ {x} is open and there is
a B € B such that B C U.

v

Let the weak base character be v, (x, X)= min{|B| : B is a weak base at
x} and x (X)=sup{xw(x, X) : x € X}.
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Properties depending on S
Weak bases

Definition (Arhangelskii)
For a space (X, T) and a point x € X a family of closed sets is a weak
base at x iff

e x5,

o for every x € U C X the set U is open iff U\ {x} is open and there is
a B € B such that B C U.

v

Let the weak base character be v, (x, X)= min{|B| : B is a weak base at
x} and x (X)=sup{xw(x, X) : x € X}.

Proposition
For any S C S we have x,,(R(S)) = 0(|S|), where 9(x) = min{|F| : F C

"w is dominating }.
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Differentiating the R(S) spaces

Invariants

Some properties which are sufficient for being non homeomorphic to one
another:

@ the symmetry of S,
o the cardinality of the defining set S,
o for finite defining sets S the number of full directions.

Problem

Can one give a nice characterization of pairs S, T C S! such that the
corresponding R(S) and R(T) topologies are homeomorphic?
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e (M,7*) is a butterfly-space over (M, T) if every point has a base B
such that for all B€ B B\ {x} € 7.

Definition
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Defining the B(S) spaces

A way of regularization

The butterfly-construction:
o Let (M, T) be a metric space.
e (M,7*) is a butterfly-space over (M, T) if every point has a base B
such that for all Be B B\ {x} € 7.

FixaS CS!, x e R? r > 0. Let us use the following notion:

S(xr) =| J{lx,x+rs):s €S}

| A\

Definition

The B(S) topology is defined as follows: an U C R? is said to be
B(S)-open iff for every point x € U there is a x € V C U such that
S(x,r) C V for some r >0 and V \ {x} is Euclidean open.

N,
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Separation axioms

Regularity and more for nice defining sets

If S is not closed then B(S) is not even regular, just Hausdorff.

Proposition

The B(S) spaces are Tychonoff iff S C S! is closed.

What happened to the character?

Proposition

For every nonempty closed S & S*: x(B(S)) = o.
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Regularity and more for nice defining sets

If S is not closed then B(S) is not even regular, just Hausdorff.

Proposition

The B(S) spaces are Tychonoff iff S C S! is closed.

What happened to the character?

Proposition

For every nonempty closed S & S*: x(B(S)) = o.
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B(S) and the Euclidean topology

For S = S* B(S?) is the Euclidean topology.

Definition

For an S C S there is no missing full direction in S iff
x¢S=—-xeS.

Proposition

Suppose that there is no missing full direction in S.
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B(S) and the Euclidean topology

For S = S* B(S?) is the Euclidean topology.

Definition

For an S C S there is no missing full direction in S iff
x¢S=—-xeS.

Proposition

Suppose that there is no missing full direction in S. Then for every
open set G in B(S), G and its Euclidean interior can only differ in X
many points.
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subset of size c.
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e B(S) is hereditarily Lindel6f,
°
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Corollaries

Trivially: if there is a missing full direction = there is a closed discrete
subset of size c.

Theorem

For the space B(S) the following are equivalent:
@ there is no missing full direction is S,
e B(S) is hereditarily Lindel6f,
e B(S) is hereditarily separable,
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Corollaries

Trivially: if there is a missing full direction = there is a closed discrete
subset of size c.

Theorem

For the space B(S) the following are equivalent:
@ there is no missing full direction is S,
e B(S) is hereditarily Lindel6f,
e B(S) is hereditarily separable,

e B(S) is normal.
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Back to the question
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Back to the question

How one can differentiate B(S) topologies?
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Back to the question

Problem
How one can differentiate B(S) topologies?

Proposition

If S, T C S! are closed, splayed and have different finite number of
connected components then B(S) and B(T) are not homeomorphic.
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Back to the question

Problem
How one can differentiate B(S) topologies?

Proposition

If S, T C S! are closed, splayed and have different finite number of
connected components then B(S) and B(T) are not homeomorphic.

Problem
How many B(S) and R(S) topologies have we defined?
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Thank you for your attention!
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Thank you for your attention!

If you have any questions...
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Thank you for your attention!

If you have any questions...

... I'd be happy to try to answer it and get confused.
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