Patterns of stationary reflection

Chris Lambie-Hanson

Einstein Institute of Mathematics
Hebrew University of Jerusalem

Winter School in Abstract Analysis 2015
Set Theory & Topology Section
Hejnice, Czech Republic
Stationary reflection

Definition
Let β be an ordinal of uncountable cofinality.

1. $S \subseteq \beta$ is stationary in β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.

Remark
If $S \subseteq S^{\lambda \kappa}$ and S reflects at β, then $\text{cf}(\beta) > \kappa$. Thus, if κ is regular and $S \subseteq S^{\kappa+\kappa}$, then S does not reflect.
Stationary reflection

Definition
Let β be an ordinal of uncountable cofinality.

1. $S \subseteq \beta$ is stationary in β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
2. If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α.
Stationary reflection

Definition
Let β be an ordinal of uncountable cofinality.

1. $S \subseteq \beta$ is stationary in β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
2. If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α.
3. If S is a stationary subset of β, then S reflects if there is $\alpha < \beta$ such that S reflects at α.
Stationary reflection

Definition

Let β be an ordinal of uncountable cofinality.

1. $S \subseteq \beta$ is stationary in β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.

2. If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α.

3. If S is a stationary subset of β, then S reflects if there is $\alpha < \beta$ such that S reflects at α.

4. If κ is a cardinal of uncountable cofinality, $\text{Refl}(\kappa)$ holds if every stationary subset of κ reflects.
Stationary reflection

Definition
Let β be an ordinal of uncountable cofinality.

1. $S \subseteq \beta$ is *stationary in β* if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
2. If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S *reflects at α* if $S \cap \alpha$ is stationary in α.
3. If S is a stationary subset of β, then S *reflects* if there is $\alpha < \beta$ such that S reflects at α.
4. If κ is a cardinal of uncountable cofinality, $\text{Refl}(\kappa)$ holds if every stationary subset of κ reflects.

If $\kappa < \lambda$ are infinite cardinals, with κ regular, then
$$S^\lambda_\kappa = \{ \alpha < \lambda \mid \text{cf}(\alpha) = \kappa \}.$$

Remark
If $S \subseteq S^\lambda_\kappa$ and S reflects at β, then $\text{cf}(\beta) > \kappa$. Thus, if κ is regular and $S \subseteq S^\kappa_\kappa^+$, then S does not reflect.
Classical results

Theorem
If \square_κ holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.
Classical results

Theorem
If \square_κ holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)
If $V = L$ and κ is a regular, uncountable cardinal, then $\text{Refl}(\kappa)$ holds iff κ is weakly compact.
Classical results

Theorem
If \Box_κ holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)
If $V = L$ and κ is a regular, uncountable cardinal, then $\text{Refl}(\kappa)$ holds iff κ is weakly compact.

Theorem (Solovay)
If μ is a singular limit of supercompact cardinals, then $\text{Refl}(\mu^+)$ holds.
Classical results

Theorem
If \square_κ holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)
If $V = L$ and κ is a regular, uncountable cardinal, then $\text{Refl}(\kappa)$ holds iff κ is weakly compact.

Theorem (Solovay)
If μ is a singular limit of supercompact cardinals, then $\text{Refl}(\mu^+)$ holds.

Theorem (Magidor)
If $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals, then there is a forcing extension in which $\kappa_n = \aleph_{n+1}$ for every $n < \omega$ and $\text{Refl}(\aleph_{\omega+1})$ holds.
Square-bracket partition relations

Definition

1. If λ is an infinite, regular cardinal and $S \subseteq \lambda$ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular $\kappa < \lambda$, there is $\beta \in S^\lambda_\kappa$ such that S reflects at β.
Square-bracket partition relations

Definition

1. If λ is an infinite, regular cardinal and $S \subseteq \lambda$ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular $\kappa < \lambda$, there is $\beta \in S^\lambda_{\geq \kappa}$ such that S reflects at β.

2. If $\mu \leq \lambda$ are cardinals, then $[\lambda]^\mu = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.
Square-bracket partition relations

Definition

1. If λ is an infinite, regular cardinal and $S \subseteq \lambda$ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular $\kappa < \lambda$, there is $\beta \in S^\lambda_{\geq \kappa}$ such that S reflects at β.

2. If $\mu \leq \lambda$ are cardinals, then $[\lambda]^\mu = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.

3. $\lambda \rightarrow [\kappa]_\theta^\mu$ is the assertion that, for every function $F : [\lambda]^\mu \rightarrow \theta$, there is $X \in [\lambda]^\kappa$ such that $F``[X]^\mu \neq \theta$.

Remark

The question of whether $\lambda^+ \rightarrow [\lambda^+]_\omega^< \lambda^+$ (or even $\lambda^+ \rightarrow [\lambda^+]^2_\omega \lambda^+$) can hold if λ is singular is a major open problem.
Square-bracket partition relations

Definition

1. If λ is an infinite, regular cardinal and $S \subseteq \lambda$ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular $\kappa < \lambda$, there is $\beta \in S^{\lambda}_{\geq \kappa}$ such that S reflects at β.

2. If $\mu \leq \lambda$ are cardinals, then $[\lambda]^\mu = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]<^\mu$ is defined in the obvious way.

3. $\lambda \rightarrow [\kappa]_\theta^\mu$ is the assertion that, for every function $F : [\lambda]^\mu \rightarrow \theta$, there is $X \in [\lambda]^\kappa$ such that $F \lceil X \rceil^\mu \neq \theta$.

4. κ is a Jónsson cardinal if $\kappa \rightarrow [\kappa]_<^\omega$.

Remark

The question of whether $\lambda^+ \rightarrow [\lambda^+]_<^\omega$ can hold if λ is singular is a major open problem.
Square-bracket partition relations

Definition

1. If \(\lambda \) is an infinite, regular cardinal and \(S \subseteq \lambda \) is stationary, we say \(S \) reflects at arbitrarily high cofinalities if, for every regular \(\kappa < \lambda \), there is \(\beta \in S^\lambda_{\geq \kappa} \) such that \(S \) reflects at \(\beta \).

2. If \(\mu \leq \lambda \) are cardinals, then \([\lambda]^{\mu} = \{X \subseteq \lambda \mid |X| = \mu\}\). \([\lambda]^{<\mu}\) is defined in the obvious way.

3. \(\lambda \rightarrow [\kappa]^{\mu}_\theta \) is the assertion that, for every function \(F : [\lambda]^{\mu} \rightarrow \theta \), there is \(X \in [\lambda]^{\kappa} \) such that \(F^{``}[X]^{\mu} \neq \theta \).

4. \(\kappa \) is a Jónsson cardinal if \(\kappa \rightarrow [\kappa]^{<\omega}_\kappa \).

Remark

The question of whether \(\lambda^+ \rightarrow [\lambda^+]^{<\omega}_{\lambda^+} \) (or even \(\lambda^+ \rightarrow [\lambda^+]^{2}_{\lambda^+} \)) can hold if \(\lambda \) is singular is a major open problem.
Square-bracket partition relations

Theorem (Tryba, Woodin)

If κ is regular and $\kappa \rightarrow [\kappa]^{<\omega}_\kappa$, $\text{Refl}(\kappa)$ holds.

Theorem (Todorcevic)

If κ is regular and $\kappa \rightarrow [\kappa]^2_\kappa$, then $\text{Refl}(\kappa)$ holds.

Theorem (Eisworth)

If λ is singular and $\lambda^+ \rightarrow [\lambda^+]^{2\lambda+}_\lambda$, then every stationary subset of λ^+ reflects at arbitrarily high cofinalities.

Question (Eisworth)

Suppose λ is a singular cardinal and $\text{Refl}(\lambda^+)$ holds. Must it be the case that every stationary subset of λ^+ reflects at arbitrarily high cofinalities?
Square-bracket partition relations

Theorem (Tryba, Woodin)
If κ is regular and $\kappa \rightarrow [\kappa]^{<\omega}_{\kappa}$, $\text{Refl}(\kappa)$ holds.

Theorem (Todorcevic)
If κ is regular and $\kappa \rightarrow [\kappa]^{2}_{\kappa}$, then $\text{Refl}(\kappa)$ holds.

Question (Eisworth)
Suppose λ is a singular cardinal and $\text{Refl}(\lambda)$ holds. Must it be the case that every stationary subset of λ reflects at arbitrarily high cofinalities?
Square-bracket partition relations

Theorem (Tryba, Woodin)
If κ is regular and $\kappa \rightarrow [\kappa]^{<\omega}_\kappa$, Refl($\kappa$) holds.

Theorem (Todorcevic)
If κ is regular and $\kappa \rightarrow [\kappa]^2_\kappa$, then Refl($\kappa$) holds.

Theorem (Eisworth)
If λ is singular and $\lambda^+ \rightarrow [\lambda^+]^{2}_{\lambda^+}$, then every stationary subset of λ^+ reflects at arbitrarily high cofinalities.

Question (Eisworth)
Suppose λ is a singular cardinal and Refl(λ^+) holds. Must it be the case that every stationary subset of λ^+ reflects at arbitrarily high cofinalities?
Square-bracket partition relations

Theorem (Tryba, Woodin)
If \(\kappa \) is regular and \(\kappa \rightarrow [\kappa]^{<\omega}_\kappa \), \(\text{Refl}(\kappa) \) holds.

Theorem (Todorcevic)
If \(\kappa \) is regular and \(\kappa \rightarrow [\kappa]^2_\kappa \), then \(\text{Refl}(\kappa) \) holds.

Theorem (Eisworth)
If \(\lambda \) is singular and \(\lambda^+ \rightarrow [\lambda^+]^2_{\lambda^+} \), then every stationary subset of \(\lambda^+ \) reflects at arbitrarily high cofinalities.

Question (Eisworth)
Suppose \(\lambda \) is a singular cardinal and \(\text{Refl}(\lambda^+) \) holds. Must it be the case that every stationary subset of \(\lambda^+ \) reflects at arbitrarily high cofinalities?
Proposition
Suppose \(\text{Refl}(\aleph_{\omega+1}) \) holds. Then every stationary subset of \(\aleph_{\omega+1} \) reflects at arbitrarily high cofinalities.
Proposition
Suppose $\text{Refl}(\aleph_{\omega+1})$ holds. Then every stationary subset of $\aleph_{\omega+1}$ reflects at arbitrarily high cofinalities.

Proof sketch
If $S \subseteq \aleph_{\omega+1}$, let $S' = \{\beta \mid S \text{ reflects at } \beta\}$. Note that, since every stationary set reflects, if S is stationary, then S' must also be stationary. Also note that if $S \subseteq S_{\aleph_n}^{\aleph_{\omega+1}}$, then $S' \subseteq S_{>\aleph_n}^{\aleph_{\omega+1}}$ and that, if S' reflects at γ, then S also reflects at γ.
Proposition
Suppose \(\text{Refl}(\aleph_{\omega+1}) \) holds. Then every stationary subset of \(\aleph_{\omega+1} \) reflects at arbitrarily high cofinalities.

Proof sketch
If \(S \subseteq \aleph_{\omega+1} \), let \(S' = \{ \beta \mid S \text{ reflects at } \beta \} \). Note that, since every stationary set reflects, if \(S \) is stationary, then \(S' \) must also be stationary. Also note that if \(S \subseteq S_{\leq \aleph_n}^{\aleph_{\omega+1}} \), then \(S' \subseteq S_{> \aleph_n}^{\aleph_{\omega+1}} \) and that, if \(S' \) reflects at \(\gamma \), then \(S \) also reflects at \(\gamma \).

Now let \(S \subseteq \aleph_{\omega+1} \) be stationary, and let \(0 < n < \omega \). To find \(\beta \in S_{\geq \aleph_n}^{\aleph_{\omega+1}} \) such that \(S \) reflects at \(\beta \), simply choose any \(\beta \in S^{(n)} \).
Approachability

Definition
Let μ be a singular cardinal. Suppose $2^\mu = \mu^+$, and let
$\vec{a} = \langle a_\alpha \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+.
Approachability

Definition
Let μ be a singular cardinal. Suppose $2^\mu = \mu^+$, and let
\[\vec{a} = \langle a_\alpha \mid \alpha < \mu^+ \rangle \]
be an enumeration of the bounded subsets of μ^+.

1. A limit ordinal $\beta < \mu^+$ is approachable with respect to \vec{a} if there is a cofinal $B \subseteq \beta$ such that $\text{otp}(B) = \text{cf}(\beta)$ and, for every $\alpha < \beta$, there is $\gamma < \beta$ such that $B \cap \alpha = a_\gamma$.

Remarks
• If μ is a singular cardinal, then $\Box^{\ast} \mu \Rightarrow \text{AP}_\mu \Rightarrow$ all scales are good.
• If $n < \omega$, $\aleph_\omega \cdot m$ is strong limit for every $m \leq n$, $\text{Refl}(\aleph_\omega \cdot n + 1)$ holds, then $\text{AP}_{\aleph_\omega \cdot n}$ holds. This is not true of $\aleph_\omega ^2$.

Approachability

Definition
Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let
\[\bar{a} = \langle a_\alpha \mid \alpha < \mu^+ \rangle \]
be an enumeration of the bounded subsets of μ^+.

1. A limit ordinal $\beta < \mu^+$ is \textit{approachable with respect to \bar{a}} if there is a cofinal $B \subseteq \beta$ such that $\text{otp}(B) = \text{cf}(\beta)$ and, for every $\alpha < \beta$, there is $\gamma < \beta$ such that $B \cap \alpha = a_\gamma$.

2. The \textit{approachability property} holds at μ (AP_μ) if the set of ordinals approachable with respect to \bar{a} contains a club in μ^+.

Remarks
• If μ is a singular cardinal, then $\Box^* \mu \Rightarrow AP_\mu \Rightarrow$ all scales are good.
• If $n < \omega$, $\aleph_\omega \cdot m$ is strong limit for every $m \leq n$, $\text{Refl}(\aleph_\omega \cdot n + 1)$ holds, then $AP_{\aleph_\omega \cdot n}$ holds. This is not true of $\aleph_\omega \cdot 2$.
Approachability

Definition
Let μ be a singular cardinal. Suppose $2^\mu = \mu^+$, and let
$\bar{a} = \langle a_\alpha \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+.

1. A limit ordinal $\beta < \mu^+$ is approachable with respect to \bar{a} if there is a cofinal $B \subseteq \beta$ such that $\text{otp}(B) = \text{cf}(\beta)$ and, for every $\alpha < \beta$, there is $\gamma < \beta$ such that $B \cap \alpha = a_\gamma$.

2. The approachability property holds at μ (AP_μ) if the set of ordinals approachable with respect to \bar{a} contains a club in μ^+.

Remarks

• If μ is a singular cardinal, then $\square^*_\mu \Rightarrow AP_\mu \Rightarrow$ all scales are good.
Approachability

Definition
Let μ be a singular cardinal. Suppose $2^\mu = \mu^+$, and let $\vec{a} = \langle a_\alpha \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+.

1. A limit ordinal $\beta < \mu^+$ is approachable with respect to \vec{a} if there is a cofinal $B \subseteq \beta$ such that $\text{otp}(B) = \text{cf}(\beta)$ and, for every $\alpha < \beta$, there is $\gamma < \beta$ such that $B \cap \alpha = a_\gamma$.

2. The approachability property holds at μ (AP_μ) if the set of ordinals approachable with respect to \vec{a} contains a club in μ^+.

Remarks

- If μ is a singular cardinal, then $\square^*_\mu \Rightarrow AP_\mu \Rightarrow$ all scales are good.
- If $n < \omega$, $\aleph_{\omega \cdot m}$ is strong limit for every $m \leq n$, $\text{Refl}(\aleph_{\omega \cdot n+1})$ holds, then $AP_{\aleph_{\omega \cdot n}}$ holds. This is not true of \aleph_{ω^2}.
Theorem (Cummings, L-H)
Suppose there is an increasing sequence $\langle \kappa_i \mid i < \omega \cdot 2 \rangle$ of supercompact cardinals. Then there is a forcing extension in which $\text{Refl}(\aleph_{\omega \cdot 2+1})$ holds, but there is a stationary $S \subseteq S_{\aleph_{\omega \cdot 2+1}}$ that does not reflect at any ordinal in $S_{\geq \aleph_{\omega+1}}$.
Theorem (Cummings, L-H)
Suppose there is an increasing sequence \(\langle \kappa_i \mid i < \omega \cdot 2 \rangle \) of supercompact cardinals. Then there is a forcing extension in which \(\text{Refl} (\aleph_{\omega \cdot 2 + 1}) \) holds, but there is a stationary \(S \subseteq S_{\aleph_{\omega \cdot 2 + 1}} \aleph_0 \) that does not reflect at any ordinal in \(S_{\aleph_{\omega \cdot 2 + 1}} \geq \aleph_{\omega + 1} \).

Proof Sketch
Assume GCH. Let \(\mu_0 = \sup (\{ \kappa_i \mid i < \omega \}) \), and let \(\mu_1 = \sup (\{ \kappa_i \mid i < \omega \cdot 2 \}) \). Let \(P_0 \) be the full-support iteration of length \(\omega \), \(\Coll (\omega, < \kappa_0) \ast \Coll (\kappa_0, < \kappa_1) \ast \Coll (\kappa_1, < \kappa_2) \ldots \) In \(V^{P_0} \), let \(P_1 \) be the full-support iteration of length \(\omega \), \(\Coll (\mu_0^+, < \kappa_\omega) \ast \Coll (\kappa_\omega, < \kappa_{\omega + 1}) \ldots \), and let \(P = P_0 \ast P_1 \).
Theorem (Cummings, L-H)
Suppose there is an increasing sequence $\langle \kappa_i \mid i < \omega \cdot 2 \rangle$ of supercompact cardinals. Then there is a forcing extension in which $\text{Refl}(\aleph_{\omega \cdot 2+1})$ holds, but there is a stationary $S \subseteq S_{\aleph_0}^{\aleph_{\omega \cdot 2+1}}$ that does not reflect at any ordinal in $S_{\aleph_{\omega+1}}^{\aleph_{\omega \cdot 2+1}}$.

Proof Sketch
Assume GCH. Let $\mu_0 = \sup(\{\kappa_i \mid i < \omega\})$, and let $\mu_1 = \sup(\{\kappa_i \mid i < \omega \cdot 2\})$. Let P_0 be the full-support iteration of length ω, $\text{Coll}(\omega, < \kappa_0) \ast \text{Coll}(\kappa_0, < \kappa_1) \ast \text{Coll}(\kappa_1, < \kappa_2) \ldots$. In V^{P_0}, let P_1 be the full-support iteration of length ω, $\text{Coll}(\mu_0^+, < \kappa_\omega) \ast \text{Coll}(\kappa_\omega, < \kappa_{\omega+1}) \ldots$, and let $P = P_0 \ast P_1$. In V^P, we have $\mu_0 = \aleph_\omega$, $(\mu_0^+)^V = \aleph_{\omega+1}$, $\mu_1 = \aleph_{\omega \cdot 2}$, $(\mu_1^+)^V = \aleph_{\omega \cdot 2+1}$.
In $\mathcal{V}^\mathbb{P}$, let $\bar{a} = \langle a_\alpha \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+. Let \mathbb{Q} be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \bar{a}. \mathbb{Q} is ordered by end-extension.
In $V^\mathbb{P}$, let $\vec{a} = \langle a_\alpha \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+. Let Q be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \vec{a}. Q is ordered by end-extension.

Facts

1. (Shelah) Q is strongly ($< \mu_1$)-strategically closed and forces AP_{μ_1}.
In V^P, let $\bar{a} = \langle a_\alpha \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+. Let Q be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \bar{a}. Q is ordered by end-extension.

Facts

1. (Shelah) Q is strongly $(< \mu_1)$-strategically closed and forces AP_{μ_1}.

2. (Hayut) In V^{P*Q}, $\text{Refl}(\mu_1^+)$ holds.
In V^{P*Q}, let \mathbb{S} be the forcing whose conditions are functions $s : \gamma \to 2$ such that:

1. $\gamma < \mu + 1$.
2. If $s(\alpha) = 1$, then $\text{cf}(\alpha) = \omega$.
3. For every $\beta \in \mathbb{S}$, $\mu + 1 \geq \mu + 0$, $\{ \alpha < \gamma \mid s(\alpha) = 1 \} \cap \beta$ is not stationary.

\mathbb{S} is ordered by reverse inclusion. \mathbb{S} is easily seen to preserve all cardinals and add a stationary subset of \mathbb{S}. The bulk of the proof, which will be omitted, lies in showing that it is still the case that $\text{Refl}(\mu + 1)$ holds after forcing with \mathbb{S}.
In V^{P*Q}, let S be the forcing whose conditions are functions $s : \gamma \to 2$ such that:

1. $\gamma < \mu_1^+$.
2. If $s(\alpha) = 1$, then $\text{cf}(\alpha) = \omega$.
3. For every $\beta \in S_{\geq \mu_0^+}^{\mu_1^+}$, \{\(\alpha \prec \gamma \mid s(\alpha) = 1\}\} \cap \beta$ is not stationary.

S is ordered by reverse inclusion.
In $V^{P\ast Q}$, let S be the forcing whose conditions are functions $s : \gamma \to 2$ such that:

1. $\gamma < \mu_1^+$.
2. If $s(\alpha) = 1$, then $\text{cf}(\alpha) = \omega$.
3. For every $\beta \in S_{\geq \mu_0^+}^{\mu_1^+}$, \(\{\alpha < \gamma \mid s(\alpha) = 1\}\cap \beta\) is not stationary.

S is ordered by reverse inclusion. S is easily seen to preserve all cardinals and add a stationary subset of $S_{\omega_1^+}^{\mu_1^+}$ that does not reflect at any ordinals in $S_{\geq \mu_0^+}^{\mu_1^+}$. The bulk of the proof, which will be omitted, lies in showing that it is still the case that $\text{Refl}(\mu_1^+)$ holds after forcing with S. \(\square\)
Some variations

Theorem (L-H)

Suppose there is a proper class of supercompact cardinals. Then there is a class forcing extension in which, for every singular cardinal $\mu > \aleph_\omega$, we have the following:

1. $\text{Refl}(\mu^+)$.

2. There is a stationary subset $S \subseteq S^\mu_\omega$ that does not reflect at any ordinals in $S^\mu_\omega \geq \aleph_{\omega+1}$.

Theorem (L-H)

Suppose there is an $\omega \cdot 2$-sequence of supercompact cardinals. Then there is a forcing extension in which:

1. $\text{Refl}(\aleph_{\omega \cdot 2}^+)$.

2. For every stationary $S \subseteq S^{\aleph_{\omega \cdot 2}}_\omega$, there is a stationary $T \subseteq S^{\aleph_{\omega \cdot 2}}_\omega$ such that T does not reflect at any ordinals in $S^{\aleph_{\omega \cdot 2}}_\omega \geq \aleph_{\omega+1}$.

Some variations

Theorem (L-H)
Suppose there is a proper class of supercompact cardinals. Then there is a class forcing extension in which, for every singular cardinal $\mu > \aleph_\omega$, we have the following:
1. $\text{Refl}(\mu^+)$.
2. There is a stationary subset $S \subseteq S_\mu^+$ that does not reflect at any ordinals in $S_{\geq \aleph_{\omega+1}}^\mu$.

Theorem (L-H)
Suppose there is a $\omega \cdot 2$-sequence of supercompact cardinals. Then there is a forcing extension in which:
1. $\text{Refl}(\aleph_{\omega \cdot 2 + 1})$.
2. For every stationary $S \subseteq S_{\aleph_{\omega \cdot 2 + 1}}^{\aleph_\omega}$, there is a stationary $T \subseteq S$ such that T does not reflect at any ordinals in $S_{\geq \aleph_{\omega+1}}^{\aleph_{\omega \cdot 2 + 1}}$.

Results without approachability

Theorem (L-H)

Suppose there is an $\omega \cdot 2$-sequence of supercompact cardinals, with μ_0 the supremum of the first ω and μ_1 the supremum of the entire sequence. Then there is a cardinal-preserving forcing extension in which:

1. Refl(μ_1^+).
2. There is a stationary subset of $S^{\mu_1^+}_\omega$ that does not reflect at any ordinals in $S^{\mu_1^+}_{\geq \mu_0^+}$.
3. AP_{μ_1} fails.
Results without approachability

Theorem (L-H)

Suppose there is an $\omega \cdot 2$-sequence of supercompact cardinals, with μ_0 the supremum of the first ω and μ_1 the supremum of the entire sequence. Then there is a cardinal-preserving forcing extension in which:

1. $\text{Refl}(\mu_1^+)$.
2. There is a stationary subset of $S_{\omega_1}^{\mu_1^+}$ that does not reflect at any ordinals in $S_{\geq \mu_0^+}^{\mu_1^+}$.
3. AP_{μ_1} fails.

Theorem (L-H)

Under the same hypotheses, there is a forcing extension in which (1),(2), and (3) hold as above, $\mu_0 = \aleph_{\omega^2}$, and $\mu_1 = \aleph_{\omega^2 + 2}$.
Questions

Question
Is it possible to bring the result of the previous theorem down to \aleph_{ω^2+1}?
Questions

Question
Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2 + 1}$?

Question
Is it consistent that $\text{Refl}(\aleph_{\omega^2 + 1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2 + 1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

• Is it consistent that $\text{Refl}(\aleph_{\omega \cdot 2 + 1})$ holds and there is a stationary subset of $\aleph_{\omega \cdot 2 + 1}$ that reflects only at ordinals of cofinality \aleph_n for n even?

• Is it consistent that $\text{Refl}(\aleph_{\omega^1 \cdot 2 + 1})$ holds and there is a stationary subset of $\aleph_{\omega^1 \cdot 2 + 1}$ that only reflects at ordinals in $\aleph_{\omega^1 \cdot 2 + 1} \geq \aleph_{\omega + 1}$?
Questions

Question
Is it possible to bring the result of the previous theorem down to \aleph_{ω^2+1}?

Question
Is it consistent that $\text{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question
What about other patterns of reflection? For example:
Questions

Question
Is it possible to bring the result of the previous theorem down to \(\aleph_{\omega^2+1} \)?

Question
Is it consistent that \(\text{Refl}(\aleph_{\omega^2+1}) \) holds and, for every stationary \(S \subseteq \aleph_{\omega^2+1} \), there is a stationary \(T \subseteq S \) that does not reflect at arbitrarily high cofinalities?

Question
What about other patterns of reflection? For example:

- Is it consistent that \(\text{Refl}(\aleph_{\omega+1}) \) holds and there is a stationary subset of \(\aleph_{\omega+1} \) that reflects only at ordinals of cofinality \(\aleph_n \) for \(n \) even?
Questions

Question
Is it possible to bring the result of the previous theorem down to \aleph_{ω^2+1}?

Question
Is it consistent that $\text{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question
What about other patterns of reflection? For example:

- Is it consistent that $\text{Refl}(\aleph_{\omega+1})$ holds and there is a stationary subset of $\aleph_{\omega+1}$ that reflects only at ordinals of cofinality \aleph_n for n even?

- Is it consistent that $\text{Refl}(\aleph_{\omega \cdot 2+1})$ holds and there is a stationary subset of $S^\aleph_{\omega \cdot 2+1}$ that only reflects at ordinals in $S^\aleph_{\omega^2+1}$?
Thank you