On a new F_σ ideal

Adam Kwela

Institute of Mathematics, Polish Academy of Sciences

January 28, 2014
An ideal \mathcal{I} on ω is Mon if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set. An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey} \Rightarrow \text{Mon}.$$

Filipów, Mrożek, Recław and Szuca asked if there is a Mon ideal which is not k-Ramsey for some k? This question was answered by Meza-Alcántara, who showed the existence of a 2-Ramsey (so Mon) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set. An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey } \Rightarrow \text{ Mon.}$$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not k-Ramsey for some k? This question was answered by Meza-Alcántara, who showed the existence of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
An ideal \mathcal{I} on ω is Mon if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set. An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey } \Rightarrow \text{ Mon}.$$

Filipów, Mrożek, Recław and Szuca asked if there is a Mon ideal which is not k-Ramsey for some k?

This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so Mon) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set. An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey } \Rightarrow \text{ Mon}.$$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not k-Ramsey for some k?

This question was answered by Meza-Alcántara, who showed the existence of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey.

But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set.

An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey} \Rightarrow \text{Mon}.$$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not k-Ramsey for some k?

This question was answered by Meza-Alcántara, who showed the existence of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey.

But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set. An ideal \mathcal{I} is k-Ramsey if every coloring of $[\omega]^2$ by k colors has a homogeneous \mathcal{I}-positive set.

$$\text{Ramsey} \Rightarrow \text{Mon}.$$

Filipów, Mrożek, Recław and Szuca asked if there is a *Mon* ideal which is not k-Ramsey for some k? This question was answered by Meza-Alcántara, who showed the existance of a 2-Ramsey (so *Mon*) ideal, which is not 3-Ramsey. But we can reformulate this question:

Question

Is there a Mon ideal which is not 2-Ramsey?
Define a coloring $\chi: [\omega \times \omega]^2 \rightarrow \{\text{blue, red}\}$ by:

$$
\chi((i,j),(k,l)) = \begin{cases}
\text{blue} & \text{if } k > i + j \\
\text{red} & \text{if } k \leq i + j
\end{cases}
$$

for $(i,j),(k,l) \in \omega \times \omega$ such that $(i,j) \leq_{\text{lex}} (k,l)$.

Definition (K.)

\mathcal{K} is the ideal generated by χ-homogeneous subsets of $\omega \times \omega$, i.e., sets $H \subset \omega \times \omega$ such that $\chi \upharpoonright [H]^2$ is constant.

It is immediate that \mathcal{K} is not 2-Ramsey. Moreover one can prove that \mathcal{K} is F_σ.

A. Kwela

On a new F_σ ideal
Define a coloring $\chi : [\omega \times \omega]^2 \rightarrow \{\text{blue, red}\}$ by:

$$
\chi ((i, j), (k, l)) = \begin{cases}
\text{blue} & \text{if } k > i + j \\
\text{red} & \text{if } k \leq i + j
\end{cases}
$$

for $(i, j), (k, l) \in \omega \times \omega$ such that $(i, j) \leq \text{lex} (k, l)$.

Definition (K.)

\mathcal{K} is the ideal generated by χ-homogeneous subsets of $\omega \times \omega$, i.e., sets $H \subset \omega \times \omega$ such that $\chi \upharpoonright [H]^2$ is constant.

It is immediate that \mathcal{K} is not 2-Ramsey. Moreover one can prove that \mathcal{K} is \mathbf{F}_σ.
Define a coloring \(\chi : [\omega \times \omega]^2 \rightarrow \{\text{blue}, \text{red}\} \) by:

\[
\chi ((i, j), (k, l)) = \begin{cases}
\text{blue} & \text{if } k > i + j \\
\text{red} & \text{if } k \leq i + j
\end{cases}
\]

for \((i, j), (k, l) \in \omega \times \omega\) such that \((i, j) \leq_{\text{lex}} (k, l)\).

Definition (K.)

\(\mathcal{K}\) is the ideal generated by \(\chi\)-homogeneous subsets of \(\omega \times \omega\), i.e., sets \(H \subset \omega \times \omega\) such that \(\chi \upharpoonright [H]^2\) is constant.

It is immediate that \(\mathcal{K}\) is not 2-Ramsey. Moreover one can prove that \(\mathcal{K}\) is \(F_\sigma\).
The ideal \mathcal{K} - some pictures
\mathcal{K} is generated by two kinds of sets.

- All vertical lines, i.e., all sets $\{i\} \times \omega$ for $i \in \omega$;
- Subsets of $\omega \times \omega$ of the following form:

\begin{figure}[h]
\centering
\begin{tikzpicture}
\draw[->, thick, black] (0,0) -- (9,0);
\draw[->, thick, black] (0,0) -- (0,9);
\fill[black] (0,0) circle (5pt);
\fill[black] (1,0) circle (5pt);
\fill[black] (2,0) circle (5pt);
\fill[black] (3,0) circle (5pt);
\fill[black] (4,0) circle (5pt);
\fill[black] (5,0) circle (5pt);
\fill[black] (6,0) circle (5pt);
\fill[black] (7,0) circle (5pt);
\fill[black] (8,0) circle (5pt);
\fill[black] (9,0) circle (5pt);
\fill[black] (0,1) circle (5pt);
\fill[black] (0,2) circle (5pt);
\fill[black] (0,3) circle (5pt);
\fill[black] (0,4) circle (5pt);
\fill[black] (0,5) circle (5pt);
\fill[black] (0,6) circle (5pt);
\fill[black] (0,7) circle (5pt);
\fill[black] (0,8) circle (5pt);
\fill[black] (0,9) circle (5pt);
\fill[black] (1,1) circle (5pt);
\fill[black] (1,2) circle (5pt);
\fill[black] (1,3) circle (5pt);
\fill[black] (1,4) circle (5pt);
\fill[black] (1,5) circle (5pt);
\fill[black] (1,6) circle (5pt);
\fill[black] (1,7) circle (5pt);
\fill[black] (1,8) circle (5pt);
\fill[black] (1,9) circle (5pt);
\fill[black] (2,1) circle (5pt);
\fill[black] (2,2) circle (5pt);
\fill[black] (2,3) circle (5pt);
\fill[black] (2,4) circle (5pt);
\fill[black] (2,5) circle (5pt);
\fill[black] (2,6) circle (5pt);
\fill[black] (2,7) circle (5pt);
\fill[black] (2,8) circle (5pt);
\fill[black] (2,9) circle (5pt);
\fill[black] (3,1) circle (5pt);
\fill[black] (3,2) circle (5pt);
\fill[black] (3,3) circle (5pt);
\fill[black] (3,4) circle (5pt);
\fill[black] (3,5) circle (5pt);
\fill[black] (3,6) circle (5pt);
\fill[black] (3,7) circle (5pt);
\fill[black] (3,8) circle (5pt);
\fill[black] (3,9) circle (5pt);
\fill[black] (4,1) circle (5pt);
\fill[black] (4,2) circle (5pt);
\fill[black] (4,3) circle (5pt);
\fill[black] (4,4) circle (5pt);
\fill[black] (4,5) circle (5pt);
\fill[black] (4,6) circle (5pt);
\fill[black] (4,7) circle (5pt);
\fill[black] (4,8) circle (5pt);
\fill[black] (4,9) circle (5pt);
\fill[black] (5,1) circle (5pt);
\fill[black] (5,2) circle (5pt);
\fill[black] (5,3) circle (5pt);
\fill[black] (5,4) circle (5pt);
\fill[black] (5,5) circle (5pt);
\fill[black] (5,6) circle (5pt);
\fill[black] (5,7) circle (5pt);
\fill[black] (5,8) circle (5pt);
\fill[black] (5,9) circle (5pt);
\fill[black] (6,1) circle (5pt);
\fill[black] (6,2) circle (5pt);
\fill[black] (6,3) circle (5pt);
\fill[black] (6,4) circle (5pt);
\fill[black] (6,5) circle (5pt);
\fill[black] (6,6) circle (5pt);
\fill[black] (6,7) circle (5pt);
\fill[black] (6,8) circle (5pt);
\fill[black] (6,9) circle (5pt);
\fill[black] (7,1) circle (5pt);
\fill[black] (7,2) circle (5pt);
\fill[black] (7,3) circle (5pt);
\fill[black] (7,4) circle (5pt);
\fill[black] (7,5) circle (5pt);
\fill[black] (7,6) circle (5pt);
\fill[black] (7,7) circle (5pt);
\fill[black] (7,8) circle (5pt);
\fill[black] (7,9) circle (5pt);
\fill[black] (8,1) circle (5pt);
\fill[black] (8,2) circle (5pt);
\fill[black] (8,3) circle (5pt);
\fill[black] (8,4) circle (5pt);
\fill[black] (8,5) circle (5pt);
\fill[black] (8,6) circle (5pt);
\fill[black] (8,7) circle (5pt);
\fill[black] (8,8) circle (5pt);
\fill[black] (8,9) circle (5pt);
\fill[black] (9,1) circle (5pt);
\fill[black] (9,2) circle (5pt);
\fill[black] (9,3) circle (5pt);
\fill[black] (9,4) circle (5pt);
\fill[black] (9,5) circle (5pt);
\fill[black] (9,6) circle (5pt);
\fill[black] (9,7) circle (5pt);
\fill[black] (9,8) circle (5pt);
\fill[black] (9,9) circle (5pt);
\end{tikzpicture}
\end{figure}
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.

- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
\(\mathcal{K} \) is generated by two kinds of sets.

- all vertical lines, i.e. all sets \(\{i\} \times \omega \) for \(i \in \omega \);
- subsets of \(\omega \times \omega \) of the following form:
\(\mathcal{K} \) is generated by two kinds of sets.

- all vertical lines, i.e. all sets \(\{i\} \times \omega \) for \(i \in \omega \);
- subsets of \(\omega \times \omega \) of the following form:
\(\mathcal{K} \) is generated by two kinds of sets.

- all vertical lines, i.e. all sets \(\{i\} \times \omega \) for \(i \in \omega \);
- subsets of \(\omega \times \omega \) of the following form:
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.

- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.

- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
\(\mathcal{K} \) is generated by two kinds of sets.
- all vertical lines, i.e. all sets \(\{i\} \times \omega \) for \(i \in \omega \);
- subsets of \(\omega \times \omega \) of the following form:
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.

- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.
- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
The ideal \mathcal{K} - some pictures

\mathcal{K} is generated by two kinds of sets.

- all vertical lines, i.e. all sets $\{i\} \times \omega$ for $i \in \omega$;
- subsets of $\omega \times \omega$ of the following form:
An ideal \mathcal{I} on ω is Mon if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

\mathcal{K} solves the Problem of Filipów, Mrożek, Recław and Szuca!
An ideal \mathcal{I} on ω is *Mon* if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

\mathcal{K} solves the Problem of Filipów, Mrożek, Recław and Szuca!
Answer to the question of Filipów et al.

An ideal \mathcal{I} on ω is Mon if every sequence of reals contains a monotone subsequence indexed by an \mathcal{I}-positive set.

Question

Is there a Mon ideal which is not 2-Ramsey?

Theorem (K.)

Every ideal on ω isomorphic to \mathcal{K} is Mon.

Corollary

\mathcal{K} solves the Problem of Filipów, Mrożek, Recław and Szuca!
A sequence \((x_i)_{i \in \omega}\) of reals is \(\mathcal{I}\)-convergent to \(x \in \mathbb{R}\) if \(\{i \in \omega : |x_i - x| \geq \epsilon\} \in \mathcal{I}\) for every \(\epsilon > 0\).

A function \(f : \mathbb{R} \to \mathbb{R}\) is a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions \((f_i)_{i \in \omega}\) if \((f_i(x))_{i \in \omega}\) is \(\mathcal{I}\)-convergent to \(f(x)\) for every \(x \in \mathbb{R}\).

For a family \(\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}\) by \(\text{LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from \(\mathcal{F}\) (for instance, if \(C\) denotes the family of continuous functions then \(\text{LIM}(C)\) is the first Baire class).

For a family \(\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}\) by \(\mathcal{I} \text{-LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions from \(\mathcal{F}\).
A sequence \((x_i)_{i \in \omega}\) of reals is \(I\)-convergent to \(x \in \mathbb{R}\) if
\[\{i \in \omega : |x_i - x| \geq \epsilon\} \in I\]
for every \(\epsilon > 0\).

A function \(f : \mathbb{R} \to \mathbb{R}\) is a pointwise limit relatively to \(I\) of a
sequence of functions \((f_i)_{i \in \omega}\) if \((f_i(x))_{i \in \omega}\) is \(I\)-convergent to \(f(x)\) for every \(x \in \mathbb{R}\).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\text{LIM}(\mathcal{F})\) we denote the family of all
functions which can be represented as a pointwise limit of a
sequence of functions from \(\mathcal{F}\) (for instance, if \(C\) denotes the
family of continuous functions then \(\text{LIM}(C)\) is the first Baire
class).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(I-\text{LIM}(\mathcal{F})\) we denote the family of all
functions which can be represented as a pointwise limit relatively to \(I\) of a sequence of functions from \(\mathcal{F}\).
A (long) digression about ideal convergence - notations

- A sequence \((x_i)_{i \in \omega}\) of reals is \(\mathcal{I}\)-convergent to \(x \in \mathbb{R}\) if \(\{i \in \omega : |x_i - x| \geq \varepsilon\} \in \mathcal{I}\) for every \(\varepsilon > 0\).

- A function \(f : \mathbb{R} \to \mathbb{R}\) is a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions \((f_i)_{i \in \omega}\) if \((f_i(x))_{i \in \omega}\) is \(\mathcal{I}\)-convergent to \(f(x)\) for every \(x \in \mathbb{R}\).

- For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\text{LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from \(\mathcal{F}\) (for instance, if \(\mathcal{C}\) denotes the family of continuous functions then \(\text{LIM}(\mathcal{C})\) is the first Baire class).

- For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\mathcal{I}\)-\(\text{LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions from \(\mathcal{F}\).
A sequence \((x_i)_{i \in \omega}\) of reals is \(\mathcal{I}\)-convergent to \(x \in \mathbb{R}\) if
\[\{i \in \omega : |x_i - x| \geq \epsilon\} \in \mathcal{I}\]
for every \(\epsilon > 0\).

A function \(f : \mathbb{R} \to \mathbb{R}\) is a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions \((f_i)_{i \in \omega}\) if \((f_i(x))_{i \in \omega}\) is \(\mathcal{I}\)-convergent to \(f(x)\) for every \(x \in \mathbb{R}\).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(LIM(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from \(\mathcal{F}\) (for instance, if \(C\) denotes the family of continuous functions then \(LIM(C)\) is the first Baire class).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\mathcal{I}LIM(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions from \(\mathcal{F}\).
A sequence \((x_i)_{i \in \omega}\) of reals is \(\mathcal{I}\)-convergent to \(x \in \mathbb{R}\) if
\[\{i \in \omega : |x_i - x| \geq \epsilon\} \in \mathcal{I}\] for every \(\epsilon > 0\).

A function \(f : \mathbb{R} \to \mathbb{R}\) is a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions \((f_i)_{i \in \omega}\) if \((f_i(x))_{i \in \omega}\) is \(\mathcal{I}\)-convergent to \(f(x)\) for every \(x \in \mathbb{R}\).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\text{LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit of a sequence of functions from \(\mathcal{F}\) (for instance, if \(\mathcal{C}\) denotes the family of continuous functions then \(\text{LIM}(\mathcal{C})\) is the first Baire class).

For a family \(\mathcal{F} \subset \mathbb{R}^\mathbb{R}\) by \(\mathcal{I}\)-\(\text{LIM}(\mathcal{F})\) we denote the family of all functions which can be represented as a pointwise limit relatively to \(\mathcal{I}\) of a sequence of functions from \(\mathcal{F}\).
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM$(C) = \text{LIM}(C)$;
2. \mathcal{I} is a weak P-ideal;
3. $\text{Fin} \otimes \text{Fin} \not\leq_K \mathcal{I}$;
4. $\text{Fin} \otimes \text{Fin} \not\sqsubseteq \mathcal{I}$.

I is a weak P-ideal if for every $(X_i)_{i \in \omega} \subset I$ there is $X \notin I$ with $X \cap X_i$ finite for all i.

$I \leq_K J$ if there is $f : \bigcup J \to \bigcup I$ such that $f^{-1}[A] \in J$ for all $A \in I$. $I \sqsubseteq J$ if f is a bijection.
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-$\text{LIM}(C) = \text{LIM}(C)$;
2. \mathcal{I} is a weak P-ideal;
3. $\text{Fin} \otimes \text{Fin} \not\leq_K \mathcal{I}$;
4. $\text{Fin} \otimes \text{Fin} \nsubseteq \mathcal{I}$.

\mathcal{I} is a weak P-ideal if for every $(X_i)_{i \in \omega} \subseteq \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all i.

$\mathcal{I} \leq_K \mathcal{J}$ if there is $f : \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if f is a bijection.
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-$\text{LIM}(C) = \text{LIM}(C)$;
2. \mathcal{I} is a weak P-ideal;
3. $\text{Fin} \otimes \text{Fin} \not\subseteq_{K} \mathcal{I}$;
4. $\text{Fin} \otimes \text{Fin} \not\subseteq \mathcal{I}$.

I is a weak P-ideal if for every $(X_i)_{i \in \omega} \subseteq \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all i.

$I \leq_K J$ if there is $f : \bigcup \mathcal{J} \to \bigcup \mathcal{I}$ such that $f^{-1}[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$. $\mathcal{I} \sqsubseteq \mathcal{J}$ if f is a bijection.
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM$(C) = \text{LIM}(C)$;
2. \mathcal{I} is a weak P-ideal;
3. $\text{Fin} \otimes \text{Fin} \not\in K \mathcal{I}$;
4. $\text{Fin} \otimes \text{Fin} \not\subseteq \mathcal{I}$.

I is a weak P-ideal if for every $(X_i)_{i \in \omega} \subseteq I$ there is $X \notin I$ with $X \cap X_i$ finite for all i.

$I \leq_K J$ if there is $f : \bigcup J \rightarrow \bigcup I$ such that $f^{-1}[A] \in J$ for all $A \in I$. $I \subseteq J$ if f is a bijection.
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM(C) = LIM(C);
2. \mathcal{I} is a weak P-ideal;
3. $\text{Fin} \otimes \text{Fin} \not\subseteq_K \mathcal{I}$;
4. $\text{Fin} \otimes \text{Fin} \not\subseteq \mathcal{I}$.

I is a weak P-ideal if for every $(X_i)_{i \in \omega} \subset \mathcal{I}$ there is $X \notin \mathcal{I}$ with $X \cap X_i$ finite for all i.

$I \leq_K J$ if there is $f : \bigcup J \rightarrow \bigcup I$ such that $f^{-1}[A] \in J$ for all $A \in I$. $I \sqsubset J$ if f is a bijection.
A (long) digression about ideal convergence

Theorem (Laczkovich and Recław, 2009)

Let \(\mathcal{I} \) be a Borel ideal. TFAE:

1. \(\mathcal{I} \)-\(\text{LIM} \)(\(\mathcal{C} \)) = \(\text{LIM} \)(\(\mathcal{C} \));
2. \(\mathcal{I} \) is a weak \(P \)-ideal;
3. \(\text{Fin} \otimes \text{Fin} \not\subseteq_k \mathcal{I} \);
4. \(\text{Fin} \otimes \text{Fin} \not\subseteq \mathcal{I} \).

\(\mathcal{I} \) is a weak \(P \)-ideal if for every \((X_i)_{i \in \omega} \subset \mathcal{I} \) there is \(X \notin \mathcal{I} \) with \(X \cap X_i \) finite for all \(i \).

\(\mathcal{I} \leq_k \mathcal{J} \) if there is \(f : \bigcup \mathcal{J} \to \bigcup \mathcal{I} \) such that \(f^{-1}[A] \in \mathcal{J} \) for all \(A \in \mathcal{I} \).

\(\mathcal{I} \sqsubseteq \mathcal{J} \) if \(f \) is a bijection.
Quasi-continuity

\(f : \mathbb{R} \rightarrow \mathbb{R} \) is quasi-continuous (\(f \in QC \)) if for every \(\epsilon > 0 \), \(x_0 \in \mathbb{R} \) and open neighborhood \(U \ni x_0 \) there is a nonempty open \(V \subset U \) such that \(|f(x) - f(x_0)| < \epsilon \) for all \(x \in V \).

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family \(LIM(QC) \).
Quasi-continuity

$f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous ($f \in QC$) if for every $\epsilon > 0$, $x_0 \in \mathbb{R}$ and open neighborhood $U \ni x_0$ there is a nonempty open $V \subset U$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in V$.

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family $LIM(QC)$.
Quasi-continuity

$f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous ($f \in QC$) if for every $\epsilon > 0$, $x_0 \in \mathbb{R}$ and open neighborhood $U \ni x_0$ there is a nonempty open $V \subset U$ such that $|f(x) - f(x_0)| < \epsilon$ for all $x \in V$.

Quasi-continuous are all continuous functions as well as all left-continuous (right-continuous) functions.

In 1988 Grande characterized the family $LIM(QC)$.
Theorem (Natkaniec and Szuca, preprint)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM$(\mathcal{QC}) = \text{LIM}(\mathcal{QC})$;
2. \mathcal{I} is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{ n : s \upharpoonright n \in T \}$ in the dual filter for all $s \in T$, contains an \mathcal{I}-positive branch.

Question

Is there a counterpart of $\text{Fin} \otimes \text{Fin}$ for the above theorem?
Theorem (Natkaniec and Szuca, preprint)

Let I be a Borel ideal. TFAE:

1. I-LIM$(QC) = LIM(QC);
2. I is weakly Ramsey;

Following Laflamme we call I weakly Ramsey if every tree $T \subset [\omega]^\omega$ with $\{n : s \upharpoonright n \in T\}$ in the dual filter for all $s \in T$, contains an I-positive branch.

Question

Is there a counterpart of $\text{Fin} \otimes \text{Fin}$ for the above theorem?
Theorem (Natkaniec and Szuca, preprint)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-$\text{LIM}(\text{QC}) = \text{LIM}(\text{QC})$;
2. \mathcal{I} is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{n : s \supseteq n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I}-positive branch.

Question

Is there a counterpart of $\text{Fin} \otimes \text{Fin}$ for the above theorem?
Theorem (Natkaniec and Szuca, preprint)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM(QC) = LIM(QC);
2. \mathcal{I} is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^\omega$ with $\{n : s \supset n \in T\}$ in the dual filter for all $s \in T$, contains an \mathcal{I}-positive branch.

Question

Is there a counterpart of $\text{Fin} \otimes \text{Fin}$ for the above theorem?
Theorem (Natkaniec and Szuca, preprint)

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-$\text{LIM(\text{QC})} = \text{LIM(\text{QC})}$;
2. \mathcal{I} is weakly Ramsey;

Following Laflamme we call \mathcal{I} weakly Ramsey if every tree $T \subset [\omega]^{<\omega}$ with $\{ n : s \upharpoonright n \in T \}$ in the dual filter for all $s \in T$, contains an \mathcal{I}-positive branch.

Question

Is there a counterpart of $\text{Fin} \otimes \text{Fin}$ for the above theorem?
Another application of the ideal \(\mathcal{K} \)

Theorem (K.)

Let \(\mathcal{I} \) be any ideal. TFAE:

1. \(\mathcal{I} \) is not weakly Ramsey;
2. \(\mathcal{K} \leq_{\mathcal{K}} \mathcal{I} \);
3. \(\mathcal{K} \subseteq \mathcal{I} \);

Corollary

Let \(\mathcal{I} \) be a Borel ideal. TFAE:

1. \(\mathcal{I} \)-\(\text{LIM}(\text{QC}) = \text{LIM}(\text{QC}) \);
2. \(\mathcal{I} \) is weakly Ramsey;
3. \(\mathcal{K} \nleq_{\mathcal{K}} \mathcal{I} \);
4. \(\mathcal{K} \nsubseteq \mathcal{I} \).
Another application of the ideal \mathcal{K}

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

1. \mathcal{I} is not weakly Ramsey;
2. $\mathcal{K} \leq_{\mathcal{K}} \mathcal{I}$;
3. $\mathcal{K} \subseteq \mathcal{I}$;

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-LIM$(\mathcal{QC}) = \text{LIM}$(\mathcal{QC});
2. \mathcal{I} is weakly Ramsey;
3. $\mathcal{K} \not\leq_{\mathcal{K}} \mathcal{I}$;
4. $\mathcal{K} \not\subseteq \mathcal{I}$.
Another application of the ideal \mathcal{K}

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

1. \mathcal{I} is not weakly Ramsey;
2. $\mathcal{K} \leq_{\mathcal{K}} \mathcal{I}$;
3. $\mathcal{K} \sqsubseteq \mathcal{I}$;

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:

1. $\mathcal{-LIM} (\mathcal{QC}) = \mathcal{LIM} (\mathcal{QC})$;
2. \mathcal{I} is weakly Ramsey;
3. $\mathcal{K} \not\leq_{\mathcal{K}} \mathcal{I}$;
4. $\mathcal{K} \not\sqsubseteq \mathcal{I}$.
Another application of the ideal \mathcal{K}

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:
1. \mathcal{I} is not weakly Ramsey;
2. $\mathcal{K} \leq_{K} \mathcal{I}$;
3. $\mathcal{K} \subseteq \mathcal{I}$;

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:
1. \mathcal{I}-LIM(\mathcal{QC}) = LIM(\mathcal{QC});
2. \mathcal{I} is weakly Ramsey;
3. $\mathcal{K} \not\leq_{K} \mathcal{I}$;
4. $\mathcal{K} \not\subseteq \mathcal{I}$.

A. Kwela
On a new F_σ ideal
Another application of the ideal \mathcal{K}

Theorem (K.)

Let \mathcal{I} be any ideal. TFAE:

1. \mathcal{I} is not weakly Ramsey;
2. $\mathcal{K} \leq_{\mathcal{K}} \mathcal{I}$;
3. $\mathcal{K} \subseteq \mathcal{I}$;

Corollary

Let \mathcal{I} be a Borel ideal. TFAE:

1. \mathcal{I}-$\text{LIM}(\text{QC}) = \text{LIM}(\text{QC})$;
2. \mathcal{I} is weakly Ramsey;
3. $\mathcal{K} \not\leq_{\mathcal{K}} \mathcal{I}$;
4. $\mathcal{K} \not\subseteq \mathcal{I}$.
More about weakly Ramsey ideals

Recall that \mathcal{I} is locally selective, if every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$ has an \mathcal{I}-positive selector.

\mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \geq n} X_m \notin \mathcal{I}$ for each n, has an \mathcal{I}-positive selector.

$$\text{weakly selective } \Rightarrow \text{ locally selective}$$

Proposition (Essentially Grigorieff, 1971)

\mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \rightarrow \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n + 1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.
More about weakly Ramsey ideals

Recall that \mathcal{I} is locally selective, if every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$ has an \mathcal{I}-positive selector.

I is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \geq n} X_m \notin \mathcal{I}$ for each n, has an \mathcal{I}-positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

I is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n + 1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.
More about weakly Ramsey ideals

Recall that \mathcal{I} is locally selective, if every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$ has an \mathcal{I}-positive selector.

\mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \geq n} X_m \notin \mathcal{I}$ for each n, has an \mathcal{I}-positive selector.

\[\text{weakly selective} \Rightarrow \text{locally selective} \]

Proposition (Essentially Grigorieff, 1971)

\mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \to \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n + 1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.

A. Kwela

On a new F_σ ideal
Recall that \mathcal{I} is locally selective, if every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$ has an \mathcal{I}-positive selector.

\mathcal{I} is weakly selective, if every partition $(X_n)_{n \in \omega}$ with at most one element not in \mathcal{I} and such that $\bigcup_{m \geq n} X_m \notin \mathcal{I}$ for each n, has an \mathcal{I}-positive selector.

weakly selective \Rightarrow locally selective

Proposition (Essentially Grigorieff, 1971)

\mathcal{I} is weakly Ramsey if and only if for every partition $(X_n)_{n \in \omega} \subset \mathcal{I}$, there exists a strictly increasing function $f : \omega \rightarrow \omega$, with $f[\omega] \notin \mathcal{I}$ and such that $f(n + 1) \in \bigcup_{i > f(n)} X_i$ for each $n \in \omega$.
weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal $(\emptyset \otimes Fin) \oplus (Fin \otimes Fin)$ is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.
More about weakly Ramsey ideals

weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal $(\emptyset \otimes \text{Fin}) \oplus (\text{Fin} \otimes \text{Fin})$ is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.
weakly selective \Rightarrow weakly Ramsey \Rightarrow locally selective

Proposition (K.)

The implications cannot be reversed!

For instance the ideal $(\emptyset \otimes \text{Fin}) \oplus (\text{Fin} \otimes \text{Fin})$ is weakly Ramsey, but not weakly selective. On the other hand \mathcal{K} is locally selective but not weakly Ramsey.
Thank you for your attention!