Richard Lupton

January 28, 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition (Filter Dichotomy, **FD**)

The Filter Dichotomy is the principle which says: for any free filter \mathcal{F} on ω there is a finite-to-one map $\phi \colon \omega \to \omega$ such that either

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $\phi(\mathcal{F}) = \mathcal{C}of$, where $\mathcal{C}of$ denotes the cofinite filter, or
- 2. $\phi(\mathcal{F}) = \mathcal{U}$ where U is a free ultrafilter on ω .

Definition (Filter Dichotomy, **FD**)

The Filter Dichotomy is the principle which says: for any free filter \mathcal{F} on ω there is a finite-to-one map $\phi \colon \omega \to \omega$ such that either

- 1. $\phi(\mathcal{F}) = \mathcal{C}of$, where $\mathcal{C}of$ denotes the cofinite filter, or
- 2. $\phi(\mathcal{F}) = \mathcal{U}$ where U is a free ultrafilter on ω .

This is secretly topology - if we stand on our heads (and use Stone Duality) we see any discussion of free filters is really a discussion of closed subsets of $\omega^* = \beta \omega \setminus \omega$, the Stone-Čech remainder of ω .

Definition (Filter Dichotomy, **FD**)

The Filter Dichotomy is the principle which says: for any free filter \mathcal{F} on ω there is a finite-to-one map $\phi: \omega \to \omega$ such that either

- 1. $\phi(\mathcal{F}) = \mathcal{C}of$, where $\mathcal{C}of$ denotes the cofinite filter, or
- 2. $\phi(\mathcal{F}) = \mathcal{U}$ where U is a free ultrafilter on ω .

This is secretly topology - if we stand on our heads (and use Stone Duality) we see any discussion of free filters is really a discussion of closed subsets of $\omega^* = \beta \omega \setminus \omega$, the Stone-Čech remainder of ω . Some lazy terminology: if there is a finite-to-one map sending a filter \mathcal{F} to a filter \mathcal{G} , we will say more concisely that \mathcal{F} is almost \mathcal{G} .

An easy observation...

If \mathcal{F} is a free filter on ω and $\chi(\mathcal{F}) < \mathfrak{u}$ then \mathcal{F} cannot be almost an ultrafilter. Hence under **FD** \mathcal{F} is almost Cof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An easy observation...

If \mathcal{F} is a free filter on ω and $\chi(F) < \mathfrak{u}$ then \mathcal{F} cannot be almost an ultrafilter. Hence under **FD** \mathcal{F} is almost $\mathcal{C}of$. Consistency of **FD** is known, but in all models so far constructed, $\mathfrak{u} = \aleph_1$. It is easy to see however, in **ZFC** that if a free filter is countably based, then it is almost $\mathcal{C}of$ (take a pseudointersection and then it is clear how to define the map).

An easy observation...

If \mathcal{F} is a free filter on ω and $\chi(F) < \mathfrak{u}$ then \mathcal{F} cannot be almost an ultrafilter. Hence under **FD** \mathcal{F} is almost Cof.

Consistency of **FD** is known, but in all models so far constructed, $u = \aleph_1$. It is easy to see however, in **ZFC** that if a free filter is countably based, then it is almost *Cof* (take a pseudointersection and then it is clear how to define the map).

Question

Is it consistent that both $\mathfrak{u} > \aleph_1$ and the Filter Dichotomy holds?

The Filter Dicotomy follows from the cardinal inequality u < g. It is not equivalent, but it *almost* is, so for the purposes of this talk, lets consider the more classical and equally interesting question:

The Filter Dicotomy follows from the cardinal inequality u < g. It is not equivalent, but it *almost* is, so for the purposes of this talk, lets consider the more classical and equally interesting question:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Is it consistent that $\mathfrak{u} < \mathfrak{g}$ and $\mathfrak{u} > \aleph_1 ?$

A little reality check...

Is it even reasonable to expect all filters of character \aleph_1 or larger to be almost $\mathcal{C}of?$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is it even reasonable to expect all filters of character \aleph_1 or larger to be almost $\mathcal{C}of?$

Theorem

Assume **MA**, or more generally $\mathfrak{p} = \mathfrak{c}$. Then if \mathcal{F} is a free filter on ω with character less than \mathfrak{c} then \mathcal{F} is almost \mathcal{C} of .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Is it even reasonable to expect all filters of character \aleph_1 or larger to be almost $\mathcal{C}of?$

Theorem

Assume **MA**, or more generally $\mathfrak{p} = \mathfrak{c}$. Then if \mathcal{F} is a free filter on ω with character less than \mathfrak{c} then \mathcal{F} is almost \mathcal{C} of .

This is all well and good, but

Theorem

Under $\mathfrak{p} = \mathfrak{c}$, the Filter Dichotomy fails.

Definition (Filter Dichotomy, **FD**)

The Filter Dichotomy is the principle which says: for any free filter \mathcal{F} on ω there is a finite-to-one map $\phi \colon \omega \to \omega$ such that either

- 1. $\phi(\mathcal{F}) = \mathcal{C}of$, where $\mathcal{C}of$ denotes the cofinite filter, or
- 2. $\phi(\mathcal{F}) = \mathcal{U}$ where U is a free ultrafilter on ω .

Consistency so far...

The Filter Dichotomy is consistent, but only so far with $u = \aleph_1$. **MA** implies the failure of the Filter Dichotomy.

Main Question

Is it consistent that $\mathfrak{u} < \mathfrak{g}$ and $\mathfrak{u} > \aleph_1$?

So what's the problem?

Limited machinery

All the models so far are built using a countable support iteration of proper forcings. No good if we want $\mathfrak{c} > \aleph_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So what's the problem?

Limited machinery

All the models so far are built using a countable support iteration of proper forcings. No good if we want $\mathfrak{c} > \aleph_2$.

Non-trivial and weird relationships

Weird relationships that complicate things...

```
Theorem (Shelah)
```

 $\mathfrak{g} \leq \mathfrak{b}^+.$

Not only is this last result of Shelah seemingly mad, it has the awkward consequence that if u < g then $g = u^+$! This interacts badly with iterated forcing machinery.

The easiest things just won't work

The following is not so difficult to show

Theorem

In any forcing extension by a finite support iteration of c.c.c. forcings, $\mathfrak{g} \leq \mathfrak{u}$.

 \ldots and we already know countable support iterations just won't work.

What about the (slightly weaker) Filter Dichotomy?

The easiest things just won't work

The following is not so difficult to show

Theorem

In any forcing extension by a finite support iteration of c.c.c. forcings, $\mathfrak{g} \leq \mathfrak{u}$.

 \ldots and we already know countable support iterations just won't work.

What about the (slightly weaker) Filter Dichotomy? Well one similarly shows that in a finite support iteration of c.c.c. forcings either

- The Filter Dichotomy fails, or
- "Nothing is gained from iterating the forcings". That is to say, the Filter Dichotomy is reflected in many initial stages, and we would have essentially had to cook up a one step forcing.

The easiest things just won't work

The following is not so difficult to show

Theorem

In any forcing extension by a finite support iteration of c.c.c. forcings, $\mathfrak{g} \leq \mathfrak{u}$.

 \ldots and we already know countable support iterations just won't work.

What about the (slightly weaker) Filter Dichotomy? Well one similarly shows that in a finite support iteration of c.c.c. forcings either

- The Filter Dichotomy fails, or
- "Nothing is gained from iterating the forcings". That is to say, the Filter Dichotomy is reflected in many initial stages, and we would have essentially had to cook up a one step forcing.

Annoying since iteration is such a natural way of thinking about these problems.

A vague plan

Because of Shelah's result...

Theorem (Shelah)

 $\mathfrak{g} \leq \mathfrak{b}^+$. In particular if $\mathfrak{u} < \mathfrak{g}$ then $\mathfrak{g} = \mathfrak{u}^+$.

...we would like to build a forcing extension in which $\mathfrak{u} = \kappa$, and $\mathfrak{g} = \kappa^+$. Iteration in the normal sense doesn't seem quite good enough, and we want to simultaneously lift \mathfrak{u} to κ and \mathfrak{g} to κ^+ . How might we achieve these two tasks of "different complexity" at the same time?

A vague plan

Because of Shelah's result...

Theorem (Shelah)

 $\mathfrak{g} \leq \mathfrak{b}^+$. In particular if $\mathfrak{u} < \mathfrak{g}$ then $\mathfrak{g} = \mathfrak{u}^+$.

...we would like to build a forcing extension in which $\mathfrak{u} = \kappa$, and $\mathfrak{g} = \kappa^+$. Iteration in the normal sense doesn't seem quite good enough, and we want to simultaneously lift \mathfrak{u} to κ and \mathfrak{g} to κ^+ . How might we achieve these two tasks of "different complexity" at the same time?

Idea

Build a forcing along a gap-1 morass at κ .

The arguments for normal (linear) iterations seem to break down. Using forcings along a gap-1 morass at κ (in the sense of Irrgang) one obtains a model in which

• $\mathfrak{u} \geq \kappa$, but

The arguments for normal (linear) iterations seem to break down. Using forcings along a gap-1 morass at κ (in the sense of Irrgang) one obtains a model in which

- $\mathfrak{u} \geq \kappa$, but
- $\mathfrak{g} \leq \kappa^+$.

The arguments for normal (linear) iterations seem to break down. Using forcings along a gap-1 morass at κ (in the sense of Irrgang) one obtains a model in which

- $\mathfrak{u} \geq \kappa$, but
- $\mathfrak{g} \leq \kappa^+$.

This class of forcings might just work then. Work is ongoing to try and find an appropriate forcing...