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Well Quasi-Orders

e A Quasi-Order (@, <) is a set () with a binary relation < on
() that is transitive and reflexive.




Well Quasi-Orders

e A Quasi-Order (@, <) is a set () with a binary relation < on
() that is transitive and reflexive.

e () is said to be Well Quasi-Ordered (WQO) if it has no
infinite antichains or infinite descending sequences.
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Well Quasi-Orders

e A Quasi-Order (@, <) is a set () with a binary relation < on
() that is transitive and reflexive.

e () is said to be Well Quasi-Ordered (WQO) if it has no
infinite antichains or infinite descending sequences.

e \We can think of the equivalent definition, that there is no
function f : N — @ such that =z < y implies f(z) £ f(vy).
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Fronts

A front F on A C N is a set of finite sequences of natural
numbers with the following properties:

e F contains an initial segment of every infinite increasing
sequence of natural numbers in A.

e JF is a C-antichain.
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Fronts

A front F on A C N is a set of finite sequences of natural
numbers with the following properties:

e F contains an initial segment of every infinite increasing
sequence of natural numbers in A.

e JF is a C-antichain.

We can define a ranking on fronts which we call the depth.
The front consisting of length 1 sequences will have depth 1.




Structured Fronts

e \We define a shift map T on an infinite sequence
X = (2;)iew to be X1 = (z;11)icw.




Structured Fronts

e \We define a shift map T on an infinite sequence
X = (2;)iew to be X1 = (z;11)icw.

e \We define the following relation on a front:
For a,b € F, a < b iff there is an infinite sequence X such
thatac X and b X,
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Better Quasi-Orders

® SO we have another equivalent definition of WQO:
there is no f : F — @ for F a front of depth 1, such that

a <1 b implies f(a) £ f(b).




Better Quasi-Orders

® SO we have another equivalent definition of WQO:
there is no f : F — @ for F a front of depth 1, such that

a <1 b implies f(a) £ f(b).

e () is said to be Better Quasi-Ordered (BQO) iff
thereis no f : F — (@ for F a front, such that a <b implies

fla) £ f(b).
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Better Quasi-Orders

® SO we have another equivalent definition of WQO:
thereis no f : F — @ for F a front of depth 1, such that

a <1 b implies f(a) £ f(b).

e () is said to be Better Quasi-Ordered (BQO) iff
thereis no f : F — (@ for F a front, such that a <b implies

fla) £ f(b).

e Such an f is called bad.
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Ramsey Spaces

e A Topological Ramsey Space is a triple (R, <,r) where R is a
nonempty set, < is a quasi-orderon R andr : Rxw — AR.

s i S
“'lr‘:'l"., I \ .|. : " #&f l¢|L' 5“ '?i .\;..:‘- ® -'; = s = 7 ‘ l_ian.'. ‘gﬁ ;“.._g"_;g




Ramsey Spaces

e A Topological Ramsey Space is a triple (R, <,r) where R is a
nonempty set, < is a quasi-orderon R and r : RXxw — AR.

e Think of R as infinite sequences and AR as finite sequences.
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Ramsey Spaces

e A Topological Ramsey Space is a triple (R, <,r) where R is a
nonempty set, < is a quasi-orderon R and r : RXxw — AR.

e Think of R as infinite sequences and AR as finite sequences.

e Eg (NI*°l, C,7) is a Ramsey space.
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Ramsey Spaces

e A Topological Ramsey Space is a triple (R, <,r) where R is a
nonempty set, < is a quasi-orderon R and r : RXxw — AR.

e Think of R as infinite sequences and AR as finite sequences.

e Eg (NI*°l, C,7) is a Ramsey space.
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Ramsey Spaces

e A Topological Ramsey Space is a triple (R, <,r) where R is a
nonempty set, < is a quasi-orderon R and r : RXxw — AR.

e Think of R as infinite sequences and AR as finite sequences.

e Eg (NI*°l, C,7) is a Ramsey space.

@ < 0 06 0 0 0 (..

e Abstract Nash-Williams T heorem:
For every front F on A € R and every partition 7 = FoU.Fq,
there is a B < A such that F|B C Fqor F|B C Fj.




R-WQO and R-BQO

® For Ramsey spaces with a valid shift map, define similarly to
before:
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R-WQO and R-BQO

® For Ramsey spaces with a valid shift map, define similarly to
before:

e () is R-WQO iff thereisno f: F — @
for F a front of depth 1, such that a<ib implies f(a) £ f(b).
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R-WQO and R-BQO

® For Ramsey spaces with a valid shift map, define similarly to
before:

e () is R-WQO iff thereisno f: F — @
for F a front of depth 1, such that a<ib implies f(a) £ f(b).

e () is R-BQO iff thereisno f: F — Q
for F a front, such that a < b implies f(a) £ f(b).
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R-WQO and R-BQO

® For Ramsey spaces with a valid shift map, define similarly to
before:

e () is R-WQO iff thereisno f: F — @
for F a front of depth 1, such that a<ib implies f(a) £ f(b).

e () is R-BQO iff thereisno f: F — Q
for F a front, such that a < b implies f(a) £ f(b).

e Here the fronts are from R instead of NI,
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R-WQO and R-BQO

T heorem:

For any topological Ramsey space R that has a countable front,
and any quasi-order @, ‘() is R-WQQO" is equivalent to one of
the following:

e () is any quasi-order,

e () has no infinite antichains,

e () has no infinite antichains and no infinite descending
sequences.
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(R)-WQO and (R)-BQO

e Fora,b € Fsayavbifri(a) # ri(b)and ri(a)dri(b)4ri(a).
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(R)-WQO and (R)-BQO

e Fora,b € Fsayavbifri(a) # ri(b)and ri(a)dri(b)4ri(a).

e We now consider structures of form (Q, <,~) where ~ is a
symmetric relation on Q).
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(R)-WQO and (R)-BQO

e Fora,b € Fsayavbifri(a) # ri(b)and ri(a)dri(b)4ri(a).

e We now consider structures of form (Q, <,~) where ~ is a

symmetric relation on Q).
Note that ~ is usually not an equivalence relation!
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(R)-WQO and (R)-BQO

e Fora,b € Fsayavbifri(a) # ri(b)and ri(a)dri(b)4ri(a).

e We now consider structures of form (Q, <,~) where ~ is a
symmetric relation on Q).
Note that ~ is usually not an equivalence relation!

e () is (R)-BQO iff there is no
f: F — @ for F a front, such that a<ib implies f(a) £ f(b),
and svt implies f(s) ~ f(t).




(R)-WQO and (R)-BQO

e Fora,b € Fsayavbifri(a) # ri(b)and ri(a)dri(b)4ri(a).

e We now consider structures of form (Q, <,~) where ~ is a
symmetric relation on Q).
Note that ~ is usually not an equivalence relation!

e () is (R)-BQO iff there is no
f: F — @ for F a front, such that a<ib implies f(a) £ f(b),
and svt implies f(s) ~ f(t).

e (Qis (R)-WQO iff there is no such f from a front of depth 1.
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(R)-WQO and (R)-BQO

For a special type of R and by choosing a sufficiently strong ~,
useful techniques from BQO theory still work.




(R)-WQO and (R)-BQO

For a special type of R and by choosing a sufficiently strong ~,
useful techniques from BQO theory still work.

e Minimal bad (Q-array lemma.

e Qis (R)-BQO implies Q is (R)-BQO.

e Bad functions from “Borel measurable bad functions”
(Simpson’s definition).
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(Nl*°h)-wqo — (Wio])-vao — (FINT )-WQO < (FIN]LOO])—WQO
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Non-Persistent Trees

Let T be the set of non-persistent trees of size Ny, with no
uncountable branches.
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Non-Persistent Trees

Let T be the set of non-persistent trees of size Ny, with no
uncountable branches.

i

For S, T € T define S < T iff there is an f : S — T such that
a <gb—f(a) <p f(b).
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Non-Persistent Trees

Let T be the set of non-persistent trees of size Ny, with no
uncountable branches.

'

For S, " € T define S < T'"iff there is an f : S — T such that
a <gb—f(a) <7 f(b).

TodorcCevi€ and VVaananen proved that this order has antichains
of size 281,
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Non-Persistent Trees

T heorem:

(T, <, ~) is (W ) BQO.
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