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Well Quasi-Orders

• A Quasi-Order (Q,≤) is a set Q with a binary relation ≤ on

Q that is transitive and reflexive.

• Q is said to be Well Quasi-Ordered (WQO) if it has no

infinite antichains or infinite descending sequences.

• We can think of the equivalent definition, that there is no

function f : N→ Q such that x < y implies f(x) 6≤ f(y).
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Fronts

A front F on A ⊆ N is a set of finite sequences of natural

numbers with the following properties:

• F contains an initial segment of every infinite increasing

sequence of natural numbers in A.

• F is a @-antichain.

We can define a ranking on fronts which we call the depth.

The front consisting of length 1 sequences will have depth 1.
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Structured Fronts

• We define a shift map ·+ on an infinite sequence

X = (xi)i∈ω, to be X+ = (xi+1)i∈ω.

• We define the following relation on a front:

For a, b ∈ F , a C b iff there is an infinite sequence X such

that a @ X and b @ X+.
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Better Quasi-Orders

• So we have another equivalent definition of WQO:

there is no f : F → Q for F a front of depth 1, such that

a C b implies f(a) 6≤ f(b).

• Q is said to be Better Quasi-Ordered (BQO) iff

there is no f : F → Q for F a front, such that a C b implies

f(a) 6≤ f(b).

• Such an f is called bad.
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Ramsey Spaces

• A Topological Ramsey Space is a triple (R,≤, r) whereR is a

nonempty set, ≤ is a quasi-order on R and r : R×ω → AR.

• Think of R as infinite sequences and AR as finite sequences.

• Eg (N[∞],⊆, r) is a Ramsey space.

...

• Abstract Nash-Williams Theorem:

For every front F on A ∈ R and every partition F = F0∪F1,

there is a B ≤ A such that F|B ⊆ F0 or F|B ⊆ F1.
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R-WQO and R-BQO

• For Ramsey spaces with a valid shift map, define similarly to

before:

• Q is R-WQO iff there is no f : F → Q
for F a front of depth 1, such that aCb implies f(a) 6≤ f(b).

• Q is R-BQO iff there is no f : F → Q
for F a front, such that a C b implies f(a) 6≤ f(b).

• Here the fronts are from R instead of N[∞].



R-WQO and R-BQO

Theorem:

For any topological Ramsey space R that has a countable front,

and any quasi-order Q, “Q is R-WQO” is equivalent to one of

the following:

• Q is any quasi-order,

• Q has no infinite antichains,

• Q has no infinite antichains and no infinite descending

sequences.
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(R)-WQO and (R)-BQO

• For a, b ∈ F say aOb if r1(a) 6= r1(b) and r1(a)6Cr1(b)6Cr1(a).

• We now consider structures of form (Q,≤,∼) where ∼ is a

symmetric relation on Q.

Note that ∼ is usually not an equivalence relation!

• Q is (R)-BQO iff there is no

f : F → Q for F a front, such that aCb implies f(a) 6≤ f(b),
and sOt implies f(s) ∼ f(t).

• Q is (R)-WQO iff there is no such f from a front of depth 1.
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(R)-WQO and (R)-BQO

For a special type of R and by choosing a sufficiently strong ∼,

useful techniques from BQO theory still work.

• Minimal bad Q-array lemma.

• Q is (R)-BQO implies Q̃ is (R)-BQO.

• Bad functions from “Borel measurable bad functions”

(Simpson’s definition).
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Non-Persistent Trees

Let T be the set of non-persistent trees of size ℵ1, with no

uncountable branches.
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Non-Persistent Trees

Let T be the set of non-persistent trees of size ℵ1, with no

uncountable branches.
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For S, T ∈ T define S ≤ T iff there is an f : S → T such that

a <S b−→f(a) <T f(b).
Todorc̆ević and Väänänen proved that this order has antichains

of size 2ℵ1.



Non-Persistent Trees

Theorem:

(T,≤,∼) is (W
[∞]
Lv

)-BQO.
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