On PID and biorthogonal systems

Christina Brech

Universidade de São Paulo

Winterschool - 2014
A biorthogonal system in a Banach space X is a family $(x_\alpha, f_\alpha)_{\alpha \in \kappa}$ in $X \times X^*$ such that $f_\alpha(x_\beta) = \delta_{\alpha \beta}$.
A biorthogonal system in a Banach space X is a family $(x_{\alpha}, f_{\alpha})_{\alpha \in \kappa}$ in $X \times X^*$ such that $f_{\alpha}(x_{\beta}) = \delta_{\alpha\beta}$.

What is the relation between the “size” of the space and the largest “size” of a biorthogonal system?
Examples

- Finite dimensional spaces (linear algebra).
Examples

- Finite dimensional spaces (linear algebra).
- Separable Banach spaces with a Schauder basis.
Examples

- Finite dimensional spaces (linear algebra).
- Separable Banach spaces with a Schauder basis.
- Separable Banach spaces (Markushevich).
Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.
Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then \(C(K) \) has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)

If K is a compact scattered space and \(K^n \) is hereditarily separable, then \(C(K) \) has no uncountable biorthogonal systems.
Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)

If K is a compact scattered space and K^n is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80’s: under CH, there exists a nonmetrizable example.
Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)

If K is a compact scattered space and K^n is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80’s: under CH, there exists a nonmetrizable example.
- Todorcevic, 80’s: under $b = \omega_1$, there exists a nonmetrizable example.
Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)

If K is a compact scattered space and K^n is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80's: under CH, there exists a nonmetrizable example.
- Todorcevic, 80's: under $\mathfrak{b} = \omega_1$, there exists a nonmetrizable example.
- B., Koszmider, 2011: consistently, there exists an example of weight ω_2.
Theorem (Todorcevic, 2006)

Under PID + \(p > \omega_1 \), every nonseparable Banach space has an uncountable biorthogonal system.
Nonseparable Banach spaces - nonexistence results

Theorem (Todorcevic, 2006)

Under PID + \(p > \omega_1 \), every nonseparable Banach space has an uncountable biorthogonal system.

Are the following equivalent under the PID?

- \(b = \omega_1 \).
- There exists a nonseparable Banach space with no uncountable biorthogonal systems.
Theorem (B., Todorcevic)

Under PID + $\mathfrak{b} > \omega_1$, every nonseparable Banach space with weak*-sequentially separable dual ball has uncountable ε-biorthogonal systems for every $0 < \varepsilon < 1$.

Corollary

Under PID, the following are equivalent:

- $\mathfrak{b} = \omega_1$
- There exists a nonseparable Asplund space with no uncountable almost biorthogonal systems.
Theorem (B., Todorcevic)

Under PID + $b > \omega_1$, every nonseparable Banach space with weak*-sequentially separable dual ball has uncountable ε-biorthogonal systems for every $0 < \varepsilon < 1$.

Corollary

Under PID, the following are equivalent:

- $b = \omega_1$.
- There exists a nonseparable Asplund space with no uncountable almost biorthogonal systems.
Sketch of the proof

P-ideal dichotomy: If $\mathcal{I} \subset [\omega_1]^{\omega}$ is a P-ideal, then

- either \exists an uncountable $\Gamma \subseteq \omega_1$ such that $[\Gamma]^{\omega} \subseteq \mathcal{I}$;
- or \exists a partition $\omega_1 = \bigcup_{n \in \omega} S_n$ such that $[S_n]^{\omega} \cap \mathcal{I} = \emptyset$.
Sketch of the proof

P-ideal dichotomy: If $I \subseteq [\omega_1]^\omega$ is a P-ideal, then

- either \exists an uncountable $\Gamma \subseteq \omega_1$ such that $[\Gamma]^\omega \subseteq I$;
- or \exists a partition $\omega_1 = \bigcup_{n \in \omega} S_n$ such that $[S_n]^\omega \cap I = \emptyset$.

Given $\mathcal{F} \subseteq [\omega_1]^\omega$ such that $|\mathcal{F}| < b$, then

$$I = \{ A \in [\omega_1]^\omega : (\forall F \in \mathcal{F}) \ |F \cap A| < \omega \}$$

is a P-ideal.
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that
\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell_\infty(\omega_1)
\]
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that
\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell_\infty(\omega_1) \quad \text{(equivalently, \(\{\alpha : h_\alpha(x) \neq 0\}\) is countable)}
\]
and \(D\) is a dense \(\mathbb{Q}\)-linear subspace of \(X\).
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^* \) is a (normalized) family such that

\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell^c_\infty(\omega_1) \quad \text{(equivalently, } \{\alpha : h_\alpha(x) \neq 0\} \text{ is countable)}
\]

and \(D \) is a dense \(\mathbb{Q} \)-linear subspace of \(X \).

Then we extract a family \((f_\alpha)_{\alpha \in \omega_1} \) such that

\[
\forall x \in X \quad (f_\alpha(x))_{\alpha \in \omega_1} \in c_0(\omega_1)
\]
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that

\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell_\infty(\omega_1) \quad \text{(equivalently, } \{\alpha : h_\alpha(x) \neq 0\} \text{ is countable)}
\]

and \(D\) is a dense \(\mathbb{Q}\)-linear subspace of \(X\).

Then we extract a family \((f_\alpha)_{\alpha \in \omega_1}\) such that

\[
\forall x \in X \quad (f_\alpha(x))_{\alpha \in \omega_1} \in c_0(\omega_1) \quad \text{(equivalently, } \forall \varepsilon > 0 \quad \{\alpha : |f_\alpha(x)| \geq \varepsilon\} \text{ is finite}).
\]
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that
\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell_\infty(\omega_1) \quad \text{(equivalently, } \{\alpha : h_\alpha(x) \neq 0\} \text{ is countable)}
\]
and \(D\) is a dense \(\mathbb{Q}\)-linear subspace of \(X\).

Then we extract a family \((f_\alpha)_{\alpha \in \omega_1}\) such that
\[
\forall x \in X \quad (f_\alpha(x))_{\alpha \in \omega_1} \in c_0(\omega_1) \quad \text{(equivalently, } \forall \varepsilon > 0 \quad \{\alpha : |f_\alpha(x)| \geq \varepsilon\} \text{ is finite}).
\]

Next we extract an uncountable subfamily \((f_\alpha)_{\alpha \in \Gamma}\) such that
\[
\forall x \in D \quad (f_\alpha(x))_{\alpha \in \Gamma} \in \ell_1(\Gamma)
\]
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that
\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell^\infty_\omega(\omega_1) \quad (\text{equivalently, } \{\alpha : h_\alpha(x) \neq 0\} \text{ is countable})
\]
and \(D\) is a dense \(\mathbb{Q}\)-linear subspace of \(X\).

Then we extract a family \((f_\alpha)_{\alpha \in \omega_1}\) such that
\[
\forall x \in X \quad (f_\alpha(x))_{\alpha \in \omega_1} \in c_0(\omega_1) \quad (\text{equivalently, } \forall \varepsilon > 0 \quad \{\alpha : |f_\alpha(x)| \geq \varepsilon\} \text{ is finite}).
\]

Next we extract an uncountable subfamily \((f_\alpha)_{\alpha \in \Gamma}\) such that
\[
\forall x \in D \quad (f_\alpha(x))_{\alpha \in \Gamma} \in \ell_1(\Gamma) \quad (\text{equivalently, } \sum_{\alpha \in \Gamma} |f_\alpha(x)| < +\infty).
\]
Suppose \((h_\alpha)_{\alpha \in \omega_1} \subseteq X^*\) is a (normalized) family such that
\[
\forall x \in X \quad (h_\alpha(x))_{\alpha \in \omega_1} \in \ell_\infty(\omega_1) \quad \text{(equivalently, \(\{\alpha : h_\alpha(x) \neq 0\}\) is countable)}
\]
and \(D\) is a dense \(\mathbb{Q}\)-linear subspace of \(X\).

Then we extract a family \((f_\alpha)_{\alpha \in \omega_1}\) such that
\[
\forall x \in X \quad (f_\alpha(x))_{\alpha \in \omega_1} \in c_0(\omega_1) \quad \text{(equivalently, \(\forall \varepsilon > 0 \quad \{\alpha : |f_\alpha(x)| \geq \varepsilon\}\) is finite)}.
\]

Next we extract an uncountable subfamily \((f_\alpha)_{\alpha \in \Gamma}\) such that
\[
\forall x \in D \quad (f_\alpha(x))_{\alpha \in \Gamma} \in \ell_1(\Gamma) \quad \text{(equivalently, \(\sum_{\alpha \in \Gamma} |f_\alpha(x)| < +\infty\))}.
\]

Finally we construct an almost biorthogonal system.