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Definition (Multisets)
The family of all multisets over a set X is denoted by M(X), e.g.

M(X) = {A e N*: |supp(A)| < No},

where supp(A) = {x € X : A(x) # 0}.



Definition (Dershowitz-Manna Ordering)
Assume that (X, R) is a binary relation system.
For A, B € M(X) we put
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Assume that (X, R) is a binary relation system.
For A, B € M(X) we put

A RX

mult

)
(A# B)A(Vx € X)(A(x) > B(x) — (3y € Y)(x R yrA(y) < B(y))).
We put

B

M(X, R) = (M(X), Roure)-
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Notation

> (X,R)®(Y,S) = (XxY,R®S), where
(x,y)R® S(x,y)

i
(O6y) # YN A ((x=X) V(R A ((y = ¥') V (¥SY'))-

> (X,R) ®iex (Y,S) = (X X Y, R ®jex S), where
(Xuy)R ®/eX S(Xluy/)

)
(O # X) ARV ((x =X) A (y # y') A (ySy').



Theorem
If (X,R) and (Y,S) are binary relation systems and X N Y =)
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Theorem
If (X,R) and (Y,S) are binary relation systems and X N Y =)
then

L. M((X,R)®(Y,S)) ~ M(X,R)@ M(Y,S)

2. M((X,R)<(Y,S)) =2 M(Y,S) ®jex M(X, R)
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Corollary
If v is an ordinal number then M(o, €) ~ (w?®, €).

Proof
M(0,€) = (0,€) and M(1,€) ~ (w, €).
M(a+1,€) = M((a, €) < (1, €)) = M(1,€) Rex M(x, €),

SO

ot(M(a +1,€)) = ot (M(L, €) Rjex M(a, €)) =

ot ((w, €) Bjex (w*, €)) = w* - w = w*.



Suppose now that A is a limit ordinal number.

ot(M(X, €)) = | J ot(M(a, €))

a<A



Suppose now that A is a limit ordinal number.

ot(M(X €)) = | ] ot(M(e,€)) = | w* =™

a<A a<A



Corollary [Dershowitz, Manna]

Suppose that (X, R) is a well-founded binary relation system.
Then M(X, R) is a well-founded binary relation system.



Definition (Well quasi-ordering)

A quasi-ordering (Q, <) is a well-quasi-ordering (wqo) if for every
infinite sequence ay, as, a3, ... from Q there exist i < j € N such
that a; < aj.



Definition (Well quasi-ordering)

A quasi-ordering (Q, <) is a well-quasi-ordering (wqo) if for every
infinite sequence ay, as, a3, ... from Q there exist i < j € N such
that a; < aj.

Remark
Assume that (X, <) is a quasi-order. TFAAE:

1. (X, <) is wqo.



Definition (Well quasi-ordering)

A quasi-ordering (Q, <) is a well-quasi-ordering (wqo) if for every
infinite sequence ay, as, a3, ... from Q there exist i < j € N such
that a; < aj.

Remark
Assume that (X, <) is a quasi-order. TFAAE:

1. (X, <) is wqo.

2. (X, <) is well-founded and has no infinite antichains.



Definition (Well quasi-ordering)

A quasi-ordering (Q, <) is a well-quasi-ordering (wqo) if for every
infinite sequence ay, as, a3, ... from Q there exist i < j € N such
that a; < aj.

Remark
Assume that (X, <) is a quasi-order. TFAAE:

1. (X, <) is wqo.
2. (X, <) is well-founded and has no infinite antichains.

3. Any extension of the relation < to a linear ordering <* of X is
a well-ordering.



Theorem
Assume that partial ordering (X, R) is a well-quasi-ordering. Then
M(X, R) is a well-quasi ordering, too.
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Proof

Suppose (M(X), R,),Su,t ) is not a well-quasi-ordering.

There is a one-to-one sequence f, : X — N of elements of M(X)
such that for i/ < j we have that —f; R,)rfu,t fi.

Let us define

le = {x € X : fi(x) > fi(x) A (Vy)(xRy — fi(y) > fi(y))}.

0< X <w.
Let x/ be any R-maximal element of X/.
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For n < i,j and y such that x/ = xRy
fily) = fiy) = fa(y)

Consider the set Xy = {xé :J > 0}. Since it is a subset of suppfy,
it is a finite set.



For i <j

fi(x)) > £(x)) and Yy X' Ry — fi(y) = fi(y).

1

For n < i,j and y such that x/ = xRy

fily) = fi(y) = fuly).

Consider the set Xy = {xé :J > 0}. Since it is a subset of suppfy,
it is a finite set. .

Define ag to be an element of Xy such that Ay = {j : x{ = ao} is
infinite.
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In the n-th step of construction we have a finite sequence
(a0, a1, ...,an—1) and a sequence of infinite sets

NDA DAL D... QA,,,.l such that

Vi<n An—l C {J rap = erninA,-}'

Consider X,, = {X{ninAn_l :j € An—1} C suppfuinA,_;-
Define a, € X, and A, C A,_1 in the way that
Ap={j€A1:xX = a,} is infinite.

min A,_1



In the n-th step of construction we have a finite sequence
(a0, a1, ...,an—1) and a sequence of infinite sets

NDAy DA D... QA,,,.l such that

Vi<nA,.1C {J 1aj = erninA,-}'

Con.sider Xp, = {X{ninAn_l :j € An—1} C suppfuinA,_;-
Define a, € X, and A, C A,_1 in the way that
Ap={j€An1: aninAn_l = a,} is infinite.

Finally we get a sequence (a,) which witnesses that (X, R) is not a
well-quasi-ordering, since for i < j we have that —a;Ra;.



Theorem
Suppose that (X, <) is a dense linear ordering without minimal
element. Then M(X, <) is a dense linear ordering, too.



Theorem
Suppose that (X, <) is a dense linear ordering without minimal
element. Then M(X, <) is a dense linear ordering, too.

Corollary

M(Q, <) ~(Q2%, <)



Thank you for your attention.



