Span and Chainability in Non-metric Continua

Dana Bartošová, Klaas Pieter Hart

VU University Amsterdam,
Delft University of Technology

September 16, 2008
DEFINITION Continuum = compact Hausdorff connected topological space.

DEFINITION Let X be a continuum. A chain is a nonempty, finite collection $C = \{C_1, \ldots, C_n\}$ of open subsets C_i of X such that $C_i \cap C_j \neq \emptyset$ if and only if $|i - j| \leq 1$. The elements C_i of C are called links of the chain C.

DEFINITION A continuum X is chainable if every open cover has an open cover refinement which is a chain.
DEFINITION Continuum = compact Hausdorff connected topological space.

DEFINITION Let X be a continuum. A chain is a nonempty, finite collection $\mathcal{C} = \{C_1, \ldots, C_n\}$ of open subsets C_i of X such that $C_i \cap C_j \neq \emptyset$ if and only if $|i - j| \leq 1$. The elements C_i of \mathcal{C} are called links of the chain \mathcal{C}.
DEFINITION Continuum = compact Hausdorff connected topological space.

DEFINITION Let X be a continuum. A chain is a nonempty, finite collection $\mathcal{C} = \{C_1, \ldots, C_n\}$ of open subsets C_i of X such that $C_i \cap C_j \neq \emptyset$ if and only if $|i - j| \leq 1$. The elements C_i of \mathcal{C} are called links of the chain \mathcal{C}.

DEFINITION A continuum X is chainable if every open cover has an open cover refinement which is a chain.
DEFINITION A continuum X has span zero if every subcontinuum Z of $X \times X$, which projects onto the same set on both coordinates, has a nonempty intersection with the diagonal $\Delta_X = \{(x, x) \mid x \in X\}$ of X. Otherwise we say that X has span non-zero.
Lelek’s conjecture

THEOREM (Lelek 1964) Every chainable continuum has span zero.

CONJECTURE (Lelek) Continuum having span zero is chainable.

OUR RESULT If there is a non-metric counterexample, there is also a metric counterexample.
Lelek’s conjecture

THEOREM (Lelek 1964) Every chainable continuum has span zero.

CONJECTURE (Lelek) Continuum having span zero is chainable.
Lelek’s conjecture

THEOREM (Lelek 1964) Every chainable continuum has span zero.

CONJECTURE (Lelek) Continuum having span zero is chainable.

OUR RESULT If there is a non-metric counterexample, there is also a metric counterexample.
DEFINITION A lattice is called disjunctive if it models the following sentence

$$\forall ab \exists c \ (a \nleq b \rightarrow c \neq 0 \text{ and } c \leq a \text{ and } b \land c = 0).$$
Wallman’s representation theorem

DEFINITION A lattice is called **disjunctive** if it models the following sentence

$$\forall ab \exists c \ (a \nleq b \rightarrow c \neq 0 \text{ and } c \leq a \text{ and } b \wedge c = 0).$$

DEFINITION A lattice is called **normal** if it models the following sentence

$$\forall ab \exists cd \ (a \wedge b = 0 \rightarrow a \wedge d = 0 \text{ and } b \wedge c = 0 \text{ and } c \lor d = 1).$$
THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff space wL with a base for closed sets being isomorphic to L. The points of wL are the ultrafilters on L. The sets $U(a) = \{ x \in wL | a \in x \}$ form a base for closed sets for the topology on wL. Wallman’s representation extends to lattice homomorphisms and provides a functor w.

Bartošová, Hart
Span and Chainability in Non-metric Continua
THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff space wL with a base for closed sets being isomorphic to L.

The points of wL are the ultrafilters on L.
Wallman’s representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff space wL with a base for closed sets being isomorphic to L.

The points of wL are the ultrafilters on L.

The sets $U(a) = \{x \in wL | a \in x \}$ form a base for closed sets for the topology on wL.

IMPORTANT: $X \to B \to wB = X$.
THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff space wL with a base for closed sets being isomorphic to L.

The points of wL are the ultrafilters on L.

The sets $U(a) = \{ x \in wL \mid a \in x \}$ form a base for closed sets for the topology on wL.

IMPORTANT $X \rightarrow \mathcal{B} \rightarrow w\mathcal{B} = X$.
THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff space wL with a base for closed sets being isomorphic to L.

The points of wL are the ultrafilters on L.

The sets $U(a) = \{x \in wL | a \in x\}$ form a base for closed sets for the topology on wL.

IMPORTANT $\mathcal{B} \rightarrow w\mathcal{B} = \mathcal{X}$.

Wallman’s representation extends to lattice homomorphisms and provides a functor w.
Ultracopower

DEFINITION \(q : X \times I \to I \) projection, \(I \) discrete

\[\beta(q) : \beta(X \times I) \to \beta(I) - \text{Čech-Stone lifting of } q \]

Ultracopower \(\sum U X \) of \(X \) with respect to an ultrafilter \(U \) on \(I \) is \((\beta(q))^{-1}[U]\).
Ultracopower

DEFINITION
$q : X \times I \rightarrow I$ projection, I discrete
$eta(q) : \beta(X \times I) \rightarrow \beta(I)$ - Čech-Stone lifting of q
Ultracopower $\sum_{U} X$ of X with respect to an ultrafilter U on I is $(\beta(q))^{-1}[U]$.

LEMMA
B a lattice base for $X \rightarrow \sum_{U} X = w(\prod_{U} B)$.

Bartošová, Hart
VU University Amsterdam, Delft University of Technology
Span and Chainability in Non-metric Continua
Ultracopower

DEFINITION \(q : X \times I \to I \) projection, \(I \) discrete
\(\beta(q) : \beta(X \times I) \to \beta(I) \) - Čech-Stone lifting of \(q \)

Ultracopower \(\sum _U X \) of \(X \) with respect to an ultrafilter \(U \) on \(I \) is \((\beta(q))^{-1}[U] \).

LEMMA \(B \) a lattice base for \(X \to \sum _U X = w(\prod _U B) \).

DEFINITION \(p : X \times I \to X \) - projection
\(\beta(p) : \beta(X \times I) \to X \) - Čech-Stone lifting of \(p \)

codiagonal map \(\nabla \equiv \beta(p) |_{\sum _U X} \)
Ultracopower $\sum_{\mathcal{U}} X$ of X with respect to an ultrafilter \mathcal{U} on I is $(\beta(q))^{-1}[\mathcal{U}]$.

LEMMA B a lattice base for $X \to \sum_{\mathcal{U}} X = w(\prod_{\mathcal{U}} B)$.

DEFINITION $p : X \times I \to X$ - projection

$\beta(p) : \beta(X \times I) \to X$ - Čech-Stone lifting of p

codiagonal map $\nabla \equiv \beta(p)|_{\sum_{\mathcal{U}} X}$

LEMMA Let $\Delta : B \to \prod_{\mathcal{U}} B$ be the diagonal embedding of a distributive disjunctive normal lattice B to its ultrapower. Then $w(\Delta) = \nabla$.

Bartošová, Hart
Span and Chainability in Non-metric Continua
Elementarity

Fix a first-order language \mathcal{L}.

DEFINITION

A and B - \mathcal{L}-structures. B is an *elementary substructure* of A if B is a substructure of A and for every formula $\phi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in B$, $B |_{a_1, \ldots, a_n} = \phi$ if and only if $A |_{a_1, \ldots, a_n} = \phi$.

ŁOWENHEIM-SKOLEM THEOREM

Let A be an infinite \mathcal{L}-structure and let $X \subset A$. Denote $\kappa = \max(|\mathcal{L}|, |X|)$. Then for every cardinal λ such that $\kappa \leq \lambda \leq |A|$, there exists an elementary substructure B of A such that $X \subset B$ and $|B| = \lambda$.
Elementarity

Fix a first-order language \mathcal{L}.

DEFINITION
A and B - \mathcal{L}-structures. B is an **elementary substructure** of A if B is a substructure of A and for every formula $\phi(x_1, \ldots, x_n)$ and $a_1, \ldots a_n \in B$

\[B \models \phi[a_1, \ldots, a_n] \text{ if and only if } A \models \phi[a_1, \ldots, a_n]. \]
Fix a first-order language \mathcal{L}.

DEFINITION A and B - \mathcal{L}-structures. B is an **elementary substructure** of A if B is a substructure of A and for every formula $\phi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in B$

$$B \models \phi[a_1, \ldots, a_n] \text{ if and only if } A \models \phi[a_1, \ldots, a_n].$$

LÖwenheim-Skolem Theorem Let A be an infinite \mathcal{L}-structure and let $X \subset A$. Denote $\kappa = \max(|\mathcal{L}|, |X|)$. Then for every cardinal λ such that $\kappa \leq \lambda \leq |A|$, there exists an elementary substructure B of A such that $X \subset B$ and $|B| = \lambda$.

Bartošová, Hart

VU University Amsterdam, Delft University of Technology

Span and Chainability in Non-metric Continua
Elementarity in set theory

For a cardinal θ, $H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less than θ. These sets are very important and useful because if θ is uncountable regular then $H(\theta) \models \text{ZFC - P}$. If M is an elementary submodel of $H(\theta)$ such that $2^X \in M$ then $L = M \cap 2^X$ is an elementary sublattice of 2^X. Similarly $K = M \cap 2^X \times X$ is an elementary sublattice of $2^X \times X$.

Bartošová, Hart
VU University Amsterdam, Delft University of Technology
Elementarity in set theory

For a cardinal \(\theta \), \(H(\theta) \) denotes the set of all sets whose transitive closure has cardinality less than \(\theta \).

These sets are very important and useful because if \(\theta \) is uncountable regular then

\[
H(\theta) \models \text{ZFC - P}.
\]
For a cardinal θ, $H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less than θ.

These sets are very important and useful because if θ is uncountable regular then

$$H(\theta) \models \text{ZFC} - \text{P}.$$

If \mathcal{M} is an elementary submodel of $H(\theta)$ such that $2^X \in \mathcal{M}$ then $L = \mathcal{M} \cap 2^X$ is an elementary sublattice of 2^X. Similarly, $K = \mathcal{M} \cap 2^{X \times X}$ is an elementary sublattice of $2^{X \times X}$.
Applying elementarity

THEOREM (van der Steeg 2003) \(wK \cong wL \times wL \).
Applying elementarity

THEOREM (van der Steeg 2003) \[w_K \cong w_L \times w_L \]

THEOREM (van der Steeg 2003) \(X \) is chainable if and only if \(w_L \) is chainable.
Let κ be a cardinal, $\lambda = \min\{\mu \mid \kappa^\mu > \kappa\}$ and let A and B be two elementarily equivalent L-structures with $\text{card}(A), \text{card}(B) < \lambda$. Then there exists an ultrafilter U over κ such that $\prod_U A$ and $\prod_U B$ are isomorphic.
THEOREM (DB+KPH 2008) If X is a continuum having span zero, then wL has span zero as well.
THEOREM (DB+KPH 2008) If X is a continuum having span zero, then wL has span zero as well.

Proof

$$
\begin{array}{ccc}
\Delta & & \\
\Pi_u K & \xrightarrow{e} & 2^X \times X \\
\Delta & & \\
\Pi_u 2^X \times X & \xrightarrow{h} & \Pi_u 2^X \times X
\end{array}
$$
\[\sum_U wK \leftarrow^{w(h)} \sum_U X \times X \]

\[wL \times wL \cong wK \leftarrow^{w(e)} X \times X \]

(2)
Proof

$$w_L \times w_L \cong w_K \xleftarrow{w(e)} X \times X$$

$$\sum_U w_K \leftarrow \sum_U X \times X$$

$$Z' = \nabla \circ w(h)^{-1} \left[\sum_U Z \right].$$
Questions

Question 1 Is there an easier (more direct) proof of the reflection of span zero?
Questions

Question 1 Is there an easier (more direct) proof of the reflection of span zero?

Question 2 If \(L \) is an elementary sublattice of \(2^X \), is the Wallman representation of the elementary embedding of \(L \) into \(2^X \) confluent.
Questions

Question 1 Is there an easier (more direct) proof of the reflection of span zero?

Question 2 If L is an elementary sublattice of 2^X, is the Wallman representation of the elementary embedding of L into 2^X confluent.

Question 3 Is there a (non)-metric continuum that has span zero and is not chainable?
THANK YOU!!!