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Selective ultrafilters and P-points

Definition A.

A free ultrafilter U/ is called a selective ultrafilier (or a Ramsey
ultrafilter) if for all partitions of w, {R; : i € w}, either for some i,
RieU,or(3U €U) (Vi ew) |UNRj| < 1.

A free ultrafilter U/ is called a P-point if for all partitions of w,
{R; : i € w}, either forsome i, R e U, or (AU € U) (Vi € w)
[UNRj| < w.
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Selective ultrafilters and P-points
Definition A.

A free ultrafilter U/ is called a selective ultrafilier (or a Ramsey
ultrafilter) if for all partitions of w, {R; : i € w}, either for some i,
RieU,or(3U €U) (Vi ew) |UNRj| < 1.

A free ultrafilter U/ is called a P-point if for all partitions of w,
{R; : i € w}, either forsome i, R e U, or (AU € U) (Vi € w)
[UNRj| < w.

Theorem (Shelah)
It is consistent that there are no P-points.
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Ultrafilter sums and products

Definition B.

Let &/ and Vp, n € w, be ultrafilters on w.

U-sum of ultrafilters Vy,, >, (V, © n € w), is an ultrafilter on
w x w definedby M € >, ,(Vp: n € w) if and only if
{n:{m:(n,m) € A} € Vp} € U.
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Ultrafilter sums and products

Definition B.

Let &/ and Vp, n € w, be ultrafilters on w.

U-sum of ultrafilters Vy,, >, (V, © n € w), is an ultrafilter on
w x w definedby M € >, ,(Vp: n € w) if and only if
{n:{m:(n,m) € A} € Vp} € U.

The product of ultrafilters ¢/ and V, denoted by I/ - V, is a U-sum
of ultrafilters V,, where V, =V for every n € w.
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Ultrafilter sums and products

Definition B.

Let &/ and Vp, n € w, be ultrafilters on w.

U-sum of ultrafilters Vy,, >, (V, © n € w), is an ultrafilter on
w x w definedby M € >, ,(Vp: n € w) if and only if
{n:{m:(n,m) € A} € Vp} € U.

The product of ultrafilters ¢/ and V, denoted by i/ - V, is a U-sum
of ultrafilters V,, where V, =V for every n € w.

-U - U is usually abbreviated as /2
- Y"1 for n > 1 is defined recursively as i/ - 14"
U =%, U new)
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T-ultrafilters

Definition C. (Baumgartner)
Let Z be a family of subsets of a set X such that Z contains all

singletons and is closed under subsets.
An ultrafilter & on w is called an Z-ulirafilter if for every
F : w — X there exists A € U such that F[A] € 7.
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T-ultrafilters

Definition C. (Baumgartner)
Let Z be a family of subsets of a set X such that Z contains all

singletons and is closed under subsets.
An ultrafilter & on w is called an Z-ulirafilter if for every
F : w — X there exists A € U such that F[A] € 7.

e if Z C J then every Z-ultrafilter is a J-ultrafilter
e Z-ultrafilters and (Z)-ultrafilters coincide
where (Z) is the ideal generated by 7
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T-ultrafilters for X = 2%

family 7 corresponding Z-ultrafilters

converging sequences

and finite sets P-points

discrete sets discrete ultrafilters
scattered sets scattered ultrafilters

{A: u(A) =0} measure zero ultrafilters

nowhere dense sets nowhere dense ultrafilters
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Z-ultrafilters for X = 2%

References

Theorem (Baumgartner)

(MAa—centered)
1. There is a nwd ultrafilter which is not measure zero.
2. There is a measure zero ultrafilter which is not scattered.
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T-ultrafilters for X = 2%

Theorem (Baumgartner)

(MAa—centered)
1. There is a nwd ultrafilter which is not measure zero.
2. There is a measure zero ultrafilter which is not scattered.

Theorem (Baumgartner)

1. For every free ultrafilter ¢/ on w, U* is not discrete.
2. If U is a scattered ultrafilter then /v is scattered.
3. If U is a P-point then U/" is discrete for all n € w.
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Z-ultrafilters for X = 2%

If Z is the family of subsets of 2 with countable closure then
the corresponding Z-ultrafilters are called countable closed
ultrafilters (Brendle).
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Z-ultrafilters for X = 2%

If Z is the family of subsets of 2 with countable closure then
the corresponding Z-ultrafilters are called countable closed
ultrafilters (Brendle).

- Every P-point is countable closed.
- Every countable closed ultrafilter is both measure zero and

scattered.

References
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Between P-points and nowhere dense ultrafilters

nowhere
dense ultfs

measure
zero ultfs
countable
closed ultfs
oints )
( selective ultfs )

scattered ultfs

discrete ulifs
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Z-ultrafilters for X = 2%

Theorem (Brendle)

(MA,_centered) There is a discrete ultrafilter which is not
measure zero.
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Z-ultrafilters for X = 2%

Theorem (Brendle)

(MA,_centered) There is a discrete ultrafilter which is not
measure zero.

Theorem (Brendle)
If ¢ is a P-point then U/“ is countable closed.
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Between P-points and nowhere dense ultrafilters

nowhere
dense ultfs

measure assuming (MA, _centered)
zero ultfs no arrow can be added
countable
closed ultfs
oints )

selective ultfs

scattered ultfs

discrete ultfs )




Between P-points & nwd ultrafilters

Some forcing results

Theorem (Shelah)

1. It is consistent that there are no nowhere dense ultrafilters.
2. ltis consistent that there are no P-points, but there is a
nowhere dense ultrafilters.
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Some forcing results

Theorem (Shelah)

1. It is consistent that there are no nowhere dense ultrafilters.
2. ltis consistent that there are no P-points, but there is a
nowhere dense ultrafilters.

Theorem (Brendle)

1. It is consistent that there are no measure zero ultrafilters, but
there is a nowhere dense ultrafilter.

2. It is consistent that there are no countable closed ultrafilters,
but there is a measure zero ultrafilter.
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Small subsets of w

Let A be a subset of w with an increasing enumeration
A={a,: necw}. Wesaythat Ais
o a
thin if limp_ s T = 0
(SC)-set if limp_oo @n41 — @ = 0
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Small subsets of w

Let A be a subset of w with an increasing enumeration
A={a,: necw}. Wesaythat Ais
o a
thin if limp_ s T = 0
(SC)-set if limp_oo @n41 — @ = 0

Ti={ACN: ZaeA% < oo}
Zy={ACN:limsup,_. 427 - o}

n
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Small subsets of w

Let A be a subset of w with an increasing enumeration
A={a,: necw}. Wesaythat Ais
o a
thin if limp_ s T = 0
(SC)-set if limp_oo @n41 — @ = 0

I1/n: {AQN:ZaeA% <OO}
Zy={ACN:limsup,_ . 20" =0}

n

The corresponding Z-ultrafilters are called thin ultrafiliers,
(SC)-ultrafilters, Z, /n-ultrafilters, Zo-ultrafilters.
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Z-ultrafilters for X = w

It follows from the inclusion between appropriate families of

subsets of w that:
- every thin ultrafilter is both (SC)-ultrafilter and Zy /,-ultrafilter
- every (SC)-ultrafilter and Zy /,-ultrafilter as well is Zo-ultrafilter
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Z-ultrafilters for X = w

It follows from the inclusion between appropriate families of

subsets of w that:
- every thin ultrafilter is both (SC)-ultrafilter and Zy /,-ultrafilter
- every (SC)-ultrafilter and Zy /,-ultrafilter as well is Zo-ultrafilter

Theorem (Fladkova)

1. Every P-point is (SC)-ultrafilter.
2. Every selective ultrafilter is thin.
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Z-ultrafilters for X = w

Zy-ultfs

(SC)-ultfs T4 p-ultfs

thin ultfs

selective ultfs
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Z-ultrafilters for X = w

Theorem (Flaskova)

( IVIAcl‘ble)

1. There exists a P-point which is not Z; ,,-ultrafilter.
2. There exists a thin ultrafilter which is not a P-point.
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Z-ultrafilters for X = w

Theorem (Flaskova)

(MActble)
1. There exists a P-point which is not Z; ,,-ultrafilter.
2. There exists a thin ultrafilter which is not a P-point.

Theorem (Fladkova)

1. For every U € w*, U? is neither thin nor (SC)-ultrafilter.

2. Assume 7 is a P-ideal on w.

If U/ and Vp, n € w, are Z-ultrafilters then U/-sum of ultrafilters V,
is Z-ultrafilter.
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Z-ultrafilters for X = w

Z()-U"fs

(SC)-ultfs T4 p-ultfs

thin ultfs

assuming (MAgsure) NO

selective ultfs arrow can be added
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Two diagrams in one

nowhere
dense ultfs

measure

zero ultfs
countable

closed ulifs

P-points thin ultfs

scattered
ultrafilters

Zo-U"fS

:

discrete ultfs (SC)-ultfs

I1/n-U|th

selective ultfs
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Some recent results
Theorem 1.

(MAwie) There exists a thin ultrafilter which is not a nowhere
dense ultrafilter.
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Some recent results
Theorem 1.

(MAwie) There exists a thin ultrafilter which is not a nowhere
dense ultrafilter.

Theorem 2.
Every measure zero ultrafilter is a Zp-ultrafilter.
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Two diagrams in one

nowhere
dense ultfs

measure
zero ultfs

Zo-U"fS

scattered ultfs

(SC)-ultfs

:

closed ulifs

discrete ultfs

P-points thin ultfs

selective ultfs

P
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Complete(?) picture

nowhere
dense ultfs

Zo-U"fS

scattered ultfs

countable
closed ulifs

:

discrete ultfs (SC)-ultfs

P-points thin ultfs

P

selective ultfs
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Open Problem
Conjecture.

(MA,_centered) There exists a discrete ultrafilter which is not a
Zy-ultrafilter.
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Open Problem

Conjecture.

(MA,_centered) There exists a discrete ultrafilter which is not a
Zy-ultrafilter.

Theorem (Brendle)

(MA,_centered) There exists a discrete ultrafilter which is not a
measure zero ultrafilter.
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