def. A function $f : \mathbb{R} \to \mathbb{R}$ is weakly continuous (two sided) at $a \in \mathbb{R}$ if there are sequences $\{x_n\} \uparrow a$, $\{y_n\} \downarrow a$ with $\lim_{n \to \infty} f(x_n) = \lim f(y_n) = f(a)$.

thm. Every function has only countably many points of weak discontinuity and every countable set is a set of weak discontinuity points.

def. $a \in \mathbb{R}$ is a point of weak symmetric continuity if there are sequences $\{x_n\} \uparrow a$, $\{y_n\} \downarrow a$ satisfying
\[
\frac{x_n + y_n}{2} = a \text{ and } \lim_{n \to \infty} f(x_n) = \lim f(y_n)
\]

The most interesting case is when we consider functions from \mathbb{R} to \mathbb{N}

thm. There is a function $f : \mathbb{R} \to \mathbb{N}$ with no points of weak symmetric continuity.
thm. Any subset of \mathbb{R} is a set points of weak symmetric continuity.

def. A function is T-weak symmetric at a if there are sequences $\{x_n\} \uparrow a$, $\{y_n\} \downarrow a$ satisfying
\[
\frac{x_n + y_n}{2} = a \quad \text{and} \quad \forall n \quad f(x_n) = f(y_n) = f(a).
\]

question Is every subset of \mathbb{R} a set of T-symmetric continuity for some $f : \mathbb{R} \to \mathbb{N}$?