CLASSIFICATION OF NEW REALS

Tomáš Pazák & Jonathan Verner

Center for Theoretical Study &
Charles University in Prague

37th Winter School of Abstract Analysis, Section Topology, Hejnice 2009

joint work with Bohuslav Balcar

Second author supported in part by the GAČR Grant no. 401/09/H007 Logical foundation of semantics
New Reals

Phrase ’Forcing notion adds a new real’ means that for any generic filter G over V, the generic extension $V[G]$ contains a new subset $\sigma \subseteq \omega$

Hence $V[G]$ contains a function $\rho : \omega \to \omega$ which does not belong to groundmodel V.

It is quite common in set theory that under the term ’real’ we mean subset of ω. Hence elements of Cantor space $C = \omega \{0, 1\}$ are reals as well as the function from ω to ω, i.e. elements from Baire space N are called reals.
New Reals

Phrase 'Forcing notion adds a new real' means that for any generic filter G over V, the generic extension $V[G]$ contains a new subset $\sigma \subset \omega$

Hence $V[G]$ contains a function $\rho : \omega \to \omega$ which does not belong to groundmodel V.

It is quite common in set theory that under the term 'real' we mean subset of ω. Hence elements of Cantor space $C = \omega \{0, 1\}$ are reals as well as the function from ω to ω, i.e. elements from Baire space \mathcal{N} are called reals.
New Reals

Phrase 'Forcing notion adds a new real' means that for any generic filter G over V, the generic extension $V[G]$ contains a new subset $\sigma \subset \omega$

Hence $V[G]$ contains a function $\rho : \omega \rightarrow \omega$ which does not belong to groundmodel V.

It is quite common in set theory that under the term 'real' we mean subset of ω. Hence elements of Cantor space $C = \omega \{0, 1\}$ are reals as well as the function from ω to ω, i.e. elements from Baire space \mathcal{N} are called reals.
Classification of New Reals

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an independent (or splitting) real over V if for all $Y \in [\omega]^{\omega} \cap V$ both $X \cap Y$ and $Y - X$ are infinite.
- A function $f \in M$, $f \in \omega^{\omega}$, is a dominating real over V if for all $g \in \omega^{\omega} \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.
- A function $h \in \omega^{\omega}$ in the extension is said to be an unbounded real over V if for all $f \in \omega^{\omega} \cap V$ the set $\{n \in \omega : h(n) > f(n)\}$ is infinite.
- A function $h \in \omega^{\omega}$ in the extension is said to be an eventually different real over V if for all $f \in \omega^{\omega} \cap V$ the set $\{n \in \omega : h(n) = f(n)\}$ is finite.
- M is an ω^{ω}-bounding extension of V if every $f \in M$, $f \in \omega^{\omega}$ is dominated by a $g \in \omega^{\omega} \cap V$.

Classification of New Reals

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an *independent* (or *splitting*) real over V if for all $Y \in [\omega]^\omega \cap V$ both $X \cap Y$ and $Y - X$ are infinite.

- A function $f \in M$, $f \in \omega^n$, is a *dominating real* over V if for all $g \in \omega^n \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.

- A function $h \in \omega^n$ in the extension is said to be an *unbounded real* over V if for all $f \in \omega^n \cap V$ the set $\{n \in \omega : h(n) > f(n)\}$ is infinite.

- A function $h \in \omega^n$ in the extension is said to be an *eventually different real* over V if for all $f \in \omega^n \cap V$ the set $\{n \in \omega : h(n) = f(n)\}$ is finite.

- M is an ω^n-*bounding extension* of V if every $f \in M$, $f \in \omega^n$ is dominated by a $g \in \omega^n \cap V$.
Classification of New Reals

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an *independent* (or *splitting*) real over V if for all $Y \in [\omega]^{\omega} \cap V$ both $X \cap Y$ and $Y - X$ are infinite.

- A function $f \in M$, $f \in \omega^\omega$, is a *dominating real* over V if for all $g \in \omega^\omega \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.

- A function $h \in \omega^\omega$ in the extension is said to be an *unbounded real* over V if for all $f \in \omega^\omega \cap V$ the set $\{n \in \omega : h(n) > f(n)\}$ is infinite.

- A function $h \in \omega^\omega$ in the extension is said to be an *eventually different real* over V if for all $f \in \omega^\omega \cap V$ the set $\{n \in \omega : h(n) = f(n)\}$ is finite.

- M is an ω^ω-bounding extension of V if every $f \in M$, $f \in \omega^\omega$ is dominated by a $g \in \omega^\omega \cap V$.
Classification of New Reals

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an independent (or splitting) real over V if for all $Y \in [\omega]^\omega \cap V$ both $X \cap Y$ and $Y - X$ are infinite.

- A function $f \in M$, $f \in \omega^\omega$, is a dominating real over V if for all $g \in \omega^\omega \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.

- A function $h \in \omega^\omega$ in the extension is said to be an unbounded real over V if for all $f \in \omega^\omega \cap V$ the set \{ $n \in \omega : h(n) > f(n)$ \} is infinite.

- A function $h \in \omega^\omega$ in the extension is said to be an eventually different real over V if for all $f \in \omega^\omega \cap V$ the set \{ $n \in \omega : h(n) = f(n)$ \} is finite.

- M is an ω^ω-bounding extension of V if every $f \in M$, $f \in \omega^\omega$ is dominated by a $g \in \omega^\omega \cap V$.
CLASSIFICATION OF NEW REALS

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an independent (or splitting) real over V if for all $Y \in [\omega]^{\omega} \cap V$ both $X \cap Y$ and $Y - X$ are infinite.
- A function $f \in M$, $f \in \omega^{\omega}$, is a dominating real over V if for all $g \in \omega^{\omega} \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.
- A function $h \in \omega^{\omega}$ in the extension is said to be an unbounded real over V if for all $f \in \omega^{\omega} \cap V$ the set $\{n \in \omega : h(n) > f(n)\}$ is infinite.
- A function $h \in \omega^{\omega}$ in the extension is said to be an eventually different real over V if for all $f \in \omega^{\omega} \cap V$ the set $\{n \in \omega : h(n) = f(n)\}$ is finite.
- M is an ω^ω-bounding extension of V if every $f \in M$, $f \in \omega^\omega$ is dominated by a $g \in \omega^\omega \cap V$.
Classification of New Reals

Let M denote an extension of V.

- $X \subseteq \omega$ in the extension is said to be an *independent* (or *splitting*) real over V if for all $Y \in [\omega]^{\omega} \cap V$ both $X \cap Y$ and $Y - X$ are infinite.
- A function $f \in M$, $f \in \omega^{\omega}$, is a *dominating real* over V if for all $g \in \omega^{\omega} \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.
- A function $h \in \omega^{\omega}$ in the extension is said to be an *unbounded real* over V if for all $f \in \omega^{\omega} \cap V$ the set \(\{ n \in \omega : h(n) > f(n) \} \) is infinite.
- A function $h \in \omega^{\omega}$ in the extension is said to be an *eventually different real* over V if for all $f \in \omega^{\omega} \cap V$ the set \(\{ n \in \omega : h(n) = f(n) \} \) is finite.
- M is an ω^{ω}-*bounding extension* of V if every $f \in M$, $f \in \omega^{\omega}$ is dominated by a $g \in \omega^{\omega} \cap V$.
Classification of New Reals

Remark.
Each dominating real is eventually different.
Each dominating real is unbounded.
Each dominating real is independent.
Classification of New Reals

Remark.
Each dominating real is eventually different.
Each dominating real is unbounded.
Each dominating real is independent.
Remark.
Each dominating real is eventually different.
Each dominating real is unbounded.
Each dominating real is independent.
Cohen forcing. Cohen forcing is countable atomless ordering and is equivalent to any of the following set

- $\text{Seq} = \bigcup \{^n \omega : n < \omega \}$,
- $\text{Seq}_2 = \bigcup \{^n 2 : n < \omega \}$,
- $\text{Fn}(\omega, 2) = \{f; f : D \to \{0, 1\}, D \in [\omega]^{<\omega}\}$,

ordered by inverse inclusion \supseteq.
Cohen forcing. *Cohen forcing* is countable atomless ordering and is equivalent to any of the following set

- \(\text{Seq} = \bigcup \{ {}^n\omega : n < \omega \} \),
- \(\text{Seq}_2 = \bigcup \{ {}^n2 : n < \omega \} \),
- \(\text{Fn}(\omega, 2) = \{ f ; f : D \to \{0, 1\}, D \in {}^{\omega}\omega \} \),

ordered by inverse inclusion \(\supseteq \).
Cohen Real

Cohen forcing. *Cohen forcing* is countable atomless ordering and is equivalent to any of the following set

- $\text{Seq} = \bigcup \{ \omega^n : n < \omega \}$,
- $\text{Seq}_2 = \bigcup \{ \omega^n : n < \omega \}$,
- $F_n(\omega, 2) = \{ f ; f : D \rightarrow \{0, 1\}, D \in [\omega]^{<\omega} \}$, ordered by inverse inclusion \supseteq.
Cohen Real

Cohen forcing. *Cohen forcing* is countable atomless ordering and is equivalent to any of the following set

- $Seq = \bigcup\{^n\omega : n < \omega\}$,
- $Seq_2 = \bigcup\{^n2 : n < \omega\}$,
- $Fn(\omega, 2) = \{f; f : D \rightarrow \{0, 1\}, D \in [\omega]^{<\omega}\}$,

ordered by inverse inclusion \supseteq.
Cohen Real

Cohen forcing. *Cohen forcing* is countable atomless ordering and is equivalent to any of the following set

- \(\text{Seq} = \bigcup \{ ^n \omega : n < \omega \} \),
- \(\text{Seq}_2 = \bigcup \{ ^n 2 : n < \omega \} \),
- \(\text{Fn}(\omega, 2) = \{ f ; f : D \to \{0, 1\}, D \in [\omega]^{<\omega} \} \),

ordered by inverse inclusion \(\supseteq \).
Cohen Real

Cohen forcing. Cohen forcing is countable atomless ordering and is equivalent to any of the following set:

- \(Seq = \bigcup \{ n \omega : n < \omega \} \),
- \(Seq_2 = \bigcup \{ n2 : n < \omega \} \),
- \(Fn(\omega, 2) = \{ f; f : D \rightarrow \{0, 1\}, D \in [\omega]^{< \omega} \} \), ordered by inverse inclusion \(\supseteq \).
Cohen forcing. Cohen forcing is countable atomless ordering and is equivalent to any of the following set

- $\text{Seq} = \bigcup \{^n\omega : n < \omega \}$,
- $\text{Seq}_2 = \bigcup \{^n2 : n < \omega \}$,
- $\text{Fn}(\omega, 2) = \{f; f : D \to \{0, 1\}, D \in [\omega]^<\omega \}$,

ordered by inverse inclusion \supseteq.
Cohen Real

Cohen forcing
Cohen Real

Cohen forcing

- adds a new real,
Cohen Real

Cohen forcing
○ adds a new real, i.e.

the generic extension $V[G]$ contains a new subset $\sigma \subset \omega$
Cohen forcing
- adds a new real,
- adds a splitting set
Cohen forcing
- adds a new real,
- adds a splitting set, i.e.

$X \subseteq \omega$ in the extension is said to be an independent (or splitting) real over V if for all $Y \in [\omega]^{\omega} \cap V$ both $X \cap Y$ and $Y - X$ are infinite.
Cohen forcing
○ adds a new real,
○ adds a splitting set,
○ adds unbounded real,
Cohen Real

Cohen forcing
- adds a new real,
- adds a splitting set,
- adds unbounded real, i.e.

A function $h \in \omega^\omega$ in the extension is said to be an *unbounded real* over V if for all $f \in \omega^\omega \cap V$ the set \{ $n \in \omega : h(n) > f(n)$ \} is infinite.
Cohen Real

Cohen forcing
○ adds a new real,
○ adds a splitting set,
○ adds unbounded real,
○ does not add an eventually different real,
Cohen Real

Cohen forcing
- adds a new real,
- adds a splitting set,
- adds unbounded real,
- does not add an eventually different real, i.e.

A function $h \in \omega^\omega$ in the extension is said to be an eventually different real over V if for all $f \in \omega^\omega \cap V$ the set $\{ n \in \omega : h(n) = f(n) \}$ is finite.
Cohen Real

Cohen forcing
- adds a new real,
- adds a splitting set,
- adds unbounded real,
- does not add an eventually different real,
Cohen forcing
- adds a new real,
- adds a splitting set,
- adds unbounded real,
- does not add an eventually different real, hence cannot add dominating reals.
• \((\text{Borel}(2^\omega) - \text{Null}, \subseteq)\) is Random forcing. The ordering is not separative, its separative quotient is

• \((\text{Borel}(2^\omega)/\text{Null}, \subseteq)\). This is ccc complete atomless Boolean algebra that carries strictly positive \(\sigma\)-additive measure, \(m[U] = m(U)\), for each \(U \in \text{Borel}(2^\omega)\).

fact Any measure algebra satisfies ccc.
Random Real

- \((\text{Borel}(2^\omega) - \text{Null}, \subseteq)\) is \textbf{Random forcing}. The ordering is not separative, its separative quotient is
- \((\text{Borel}(2^\omega)/\text{Null}, \subseteq)\). This is ccc complete atomless Boolean algebra that carries strictly positive \(\sigma\)-additive measure, \(m[U] = m(U)\), for each \(U \in \text{Borel}(2^\omega)\).

\textbf{fact} Any measure algebra satisfies ccc.
Random Real

- \((\text{Borel}(2^\omega) - \text{Null}, \subseteq)\) is **Random forcing**. The ordering is not separative, its separative quotient is
- \((\text{Borel}(2^\omega)/\text{Null}, \subseteq)\). This is ccc complete atomless Boolean algebra that carries strictly positive \(\sigma\)-additive measure, \(m[U] = m(U)\), for each \(U \in \text{Borel}(2^\omega)\).

fact Any measure algebra satisfies ccc.
Random forcing
Random forcing
- adds a new real,
Random Real

Random forcing
○ adds a new real, i.e.

the generic extension $V[G]$ contains a new subset $\sigma \subset \omega$
Random forcing
- adds a new real,
- adds a splitting set,
Random Real

Random forcing
- adds a new real,
- adds a splitting set, i.e.

$X \subseteq \omega$ in the extension is said to be an independent (or splitting) real over V if for all $Y \in [\omega]^\omega \cap V$ both $X \cap Y$ and $Y - X$ are infinite.
Random Real

Random forcing
○ adds a new real,
○ adds a splitting set,
○ adds an eventually different real,
Random Real

Random forcing
- adds a new real,
- adds a splitting set,
- adds an eventually different real, i.e.

A function $h \in \omega^\omega$ in the extension is said to be an \textit{eventually different real} over V if for all $f \in \omega^\omega \cap V$ the set $\{ n \in \omega : h(n) = f(n) \}$ is finite.
Random Real

Random forcing
- adds a new real,
- adds a splitting set,
- adds an eventually different real,
- is an ω^ω-bounding extension,
Random Real

Random forcing
- adds a new real,
- adds a splitting set,
- adds an eventually different real,
- is an ω^ω-bounding extension, i.e.

M is an ω^ω-bounding extension of V if every $f \in M$, $f \in \omega^\omega$ is dominated by a $g \in \omega^\omega \cap V$.

Random Real

Random forcing
- adds a new real,
- adds a splitting set,
- adds an eventually different real,
- is an ω^ω-bounding extension,
Random Real

Random forcing
○ adds a new real,
○ adds a splitting set,
○ adds an eventually different real,
○ is an ω^ω-bounding extension, hence cannot add unbounded real.
Random Real

Random forcing
- adds a new real,
- adds a splitting set,
- adds an eventually different real,
- is an ω^ω-bounding extension, hence cannot add unbounded real.

Theorem
(i) In Random extension are groundmodel reals meager.
Random Real

Random forcing
○ adds a new real,
○ adds a splitting set,
○ adds an eventually different real,
○ is an ω-bounding extension, hence cannot add unbounded real.

Theorem
(i) In Random extension are groundmodel reals meager.
(ii) In Cohen extension are groundmodel reals negligible.
A function $f \in M, f \in \omega^\omega$, is a *dominating real* over V if for all $g \in \omega^\omega \cap V$ for all but finitely many $n \in \omega$, $g(n) \leq f(n)$.
Hechler forcing
is a set $H_0 = \{ \langle s, f \rangle : s \in <\omega \omega, f : \omega \to \omega, s \subset f \}$,
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s$ & $(\forall n \in \omega) f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
Hechler Real

Hechler forcing
is a set $H_0 = \{ \langle s, f \rangle : s \in {}^{<\omega}\omega, \ f : \omega \to \omega, \ s \subset f \}$,
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s \ & \ (\forall n \in \omega) \ f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
Hechler forcing
is a set $H_0 = \{\langle s, f \rangle : s \in ^\omega \omega, f : \omega \to \omega, s \subseteq f \}$,
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s$ & $(\forall n \in \omega) f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
Hechler Real

Hechler forcing
is a set $H_0 = \{ \langle s, f \rangle : s \in <\omega \omega, f : \omega \to \omega, s \subset f \}$,
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s$ & $(\forall n \in \omega) f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
Hechler Real

Hechler forcing is a set \(H_0 = \{ \langle s, f \rangle : s \in <\omega \omega, f : \omega \rightarrow \omega, s \subset f \} \), with a partial ordering
\(\langle s, f \rangle \leq \langle t, g \rangle \) if and only if \(t \subseteq s \) \& (\(\forall n \in \omega \) \(f(n) \geq g(n) \)).

adds dominating real
Hence it also adds **eventually different**, unbounded, and independent real.
Hechler forcing
is a set $H_0 = \{\langle s, f \rangle : s \in <\omega \omega, f : \omega \to \omega, s \subset f \}$,
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s \& (\forall n \in \omega) f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
Hechler forcing
is a set $H_0 = \{ \langle s, f \rangle : s \in \langle \omega \omega, f : \omega \to \omega, s \subseteq f \} \}$
with a partial ordering
$\langle s, f \rangle \leq \langle t, g \rangle$ if and only if $t \subseteq s$ \& $(\forall n \in \omega) f(n) \geq g(n)$.

adds dominating real
Hence it also adds eventually different, unbounded, and independent real.
B. Balcar, T. Pazák and J. Verner
An Exposition to Generic Extensions and Forcing in Set Theory,
in preparation.

K. Kunen
Set theory, An introduction to independence proofs,

T. Jech.
Set theory, The Third Millennium Edition,
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002

A. Kanamori.
Cohen and set theory,

T. Bartoszyński and H. Judah
Set theory; On the structure of the real line.
A K Peters Ltd., Wellesley, MA, 1995