Forcing when there are Large Cardinals

Summary:
1. What are large cardinals?
2. Forcings which preserve large cardinals (failure of GCH at a measurable)
3. Forcings which destroy large cardinals, but do something interesting (Singularity Cardinal Hypothesis)
4. Some open questions
Forcing when there are Large Cardinals

Summary:
Forcing when there are Large Cardinals

Summary:

1. What are large cardinals?
Forcing when there are Large Cardinals

Summary:

1. What are large cardinals?

2. Forcings which preserve large cardinals (failure of GCH at a measurable)
Summary:

1. What are large cardinals?

2. Forcings which preserve large cardinals (failure of GCH at a measurable)

3. Forcings which destroy large cardinals, but do something interesting (Singular Cardinal Hypothesis)
Forcing when there are Large Cardinals

Summary:

1. What are large cardinals?

2. Forcings which preserve large cardinals (failure of GCH at a measurable)

3. Forcings which destroy large cardinals, but do something interesting (Singular Cardinal Hypothesis)

4. Some open questions
What are large cardinals?

\(\kappa \) is inaccessible iff:
\(\kappa > \aleph_0 \)
\(\kappa \) is regular
\(\lambda < \kappa \rightarrow 2^\lambda < \kappa \)
What are large cardinals?

\(\kappa \) is inaccessible iff:

- \(\kappa > \aleph_0 \)
- \(\kappa \) is regular
- \(\lambda < \kappa \rightarrow 2^\lambda < \kappa \)

\(\kappa \) inaccessible implies \(V_\kappa \) is a model of ZFC
What are large cardinals?

\(\kappa \) is inaccessible iff:
- \(\kappa > \aleph_0 \)
- \(\kappa \) is regular
- \(\lambda < \kappa \rightarrow 2^\lambda < \kappa \)

\(\kappa \) inaccessible implies \(V_\kappa \) is a model of ZFC

\(\kappa \) is measurable iff:
- \(\kappa > \aleph_0 \)
- \(\exists \) nonprincipal, \(\kappa \)-complete ultrafilter on \(\kappa \)
What are large cardinals?

Embeddings:
What are large cardinals?

Embeddings:

\(V = \) universe of all sets
\(M \) an inner model (transitive class satisfying ZFC, containing Ord)
What are large cardinals?

Embeddings:

\[V = \text{universe of all sets} \]
\[M \text{ an inner model (transitive class satisfying ZFC, containing Ord)} \]

\[j : V \to M \text{ is an embedding iff:} \]
\[j \text{ is not the identity} \]
\[j \text{ preserves the truth of formulas with parameters} \]
What are large cardinals?

Embeddings:

\[V = \text{universe of all sets} \]
\[M \text{ an inner model (transitive class satisfying ZFC, containing Ord)} \]

\[j : V \to M \text{ is an embedding iff:} \]
\[j \text{ is not the identity} \]
\[j \text{ preserves the truth of formulas with parameters} \]

Critical point of } j \text{ is the least } \kappa, j(\kappa) \neq \kappa
What are large cardinals?

Embeddings:

\(V = \) universe of all sets
\(M \) an inner model (transitive class satisfying ZFC, containing Ord)

\(j : V \rightarrow M \) is an *embedding* iff:

- \(j \) is not the identity
- \(j \) preserves the truth of formulas with parameters

Critical point of \(j \) is the least \(\kappa \), \(j(\kappa) \neq \kappa \)

Idea: \(\kappa \) is “large” iff \(\kappa \) is the critical point of an embedding \(j : V \rightarrow M \) where \(M \) is “large”
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$.

Fact: Measurable $= \kappa$-hypermeasurable $= \kappa$-supercompact.

Kunen: No $j : V \rightarrow M$ witnesses λ-hypermeasurability for all λ, i.e., M cannot equal V.

However: κ could be λ-hypermeasurable for all λ (i.e., the critical point of embeddings with arbitrary degrees of hypermeasurability)
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$

κ is λ-hypermeasurable iff $H(\lambda) \subseteq M$
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$

κ is λ-hypermeasurable iff $H(\lambda) \subseteq M$

κ is λ-supercompact iff $M^\lambda \subseteq M$
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$

κ is λ-hypermeasurable iff $H(\lambda) \subseteq M$

κ is λ-supercompact iff $M^\lambda \subseteq M$

Fact: Measurable $= \kappa^+$-hypermeasurable $= \kappa$-supercompact.
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$

κ is λ-hypermeasurable iff $H(\lambda) \subseteq M$

κ is λ-supercompact iff $M^\lambda \subseteq M$

Fact: Measurable $= \kappa^+-$hypermeasurable $= \kappa$-supercompact.

Kunen: No $j : V \rightarrow M$ witnesses λ-hypermeasurability for all λ, i.e., M cannot equal V
What are large cardinals?

Suppose that κ is the critical point of $j : V \rightarrow M$

κ is λ-hypermeasurable iff $H(\lambda) \subseteq M$

κ is λ-supercompact iff $M^\lambda \subseteq M$

Fact: Measurable = κ^+-hypermeasurable = κ-supercompact.

Kunen: No $j : V \rightarrow M$ witnesses λ-hypermeasurability for all λ, i.e., M cannot equal V

However: κ could be λ-hypermeasurable for all λ (i.e., the critical point of embeddings with arbitrary degrees of hypermeasurability)
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?

Lifting method (Silver):
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?

Lifting method (Silver):

Given $j : V \rightarrow M$ and G which is P-generic over V
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?

Lifting method (Silver):

Given $j : V \rightarrow M$ and G which is P-generic over V

Let P^* be $j(P)$
Forcings that preserve large cardinals

Question: Suppose \(\kappa \) is a large cardinal and \(G \) is \(P \)-generic over \(V \). Is \(\kappa \) still a large cardinal in \(V[G] \)?

Lifting method (Silver):

Given \(j : V \rightarrow M \) and \(G \) which is \(P \)-generic over \(V \)

Let \(P^* \) be \(j(P) \)

Goal: Find a \(G^* \) which is \(P^* \)-generic over \(M \) such that \(j[G] \subseteq G^* \)
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?

Lifting method (Silver):

Given $j : V \rightarrow M$ and G which is P-generic over V

Let P^* be $j(P)$

Goal: Find a G^* which is P^*-generic over M such that $j[G] \subseteq G^*$

Then $j : V \rightarrow M$ lifts to $j^* : V[G] \rightarrow M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$
Forcings that preserve large cardinals

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?

Lifting method (Silver):

Given $j : V \rightarrow M$ and G which is P-generic over V

Let P^* be $j(P)$

Goal: Find a G^* which is P^*-generic over M such that $j[G] \subseteq G^*$

Then $j : V \rightarrow M$ lifts to $j^* : V[G] \rightarrow M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$

If G^* belongs to $V[G]$ then κ is still measurable (and maybe more) in $V[G]$.
Forcings that preserve large cardinals

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that \(\kappa \) is \(\kappa^{++} \)-hypermeasurable. Then in a forcing extension, \(\kappa \) is still measurable and \(2^\kappa = \kappa^{++} \).
An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++}-hypermeasurable. Then in a forcing extension, κ is still measurable and $2^\kappa = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.
Forcings that preserve large cardinals

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++}-hypermeasurable. Then in a forcing extension, κ is still measurable and $2^{\kappa} = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.

Step 1. Choose a forcing to make GCH fail at kappa.
Forcings that preserve large cardinals

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++}-hypermeasurable. Then in a forcing extension, κ is still measurable and $2^\kappa = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.

Step 1. Choose a forcing to make GCH fail at kappa.

Obvious choice: Cohen(κ, κ^{++})

Add κ^{++}-many κ-Cohen sets
Forcings that preserve large cardinals

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++}-hypermeasurable. Then in a forcing extension, κ is still measurable and $2^\kappa = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.

Step 1. Choose a forcing to make GCH fail at kappa.

Obvious choice: Cohen(κ, κ^{++})

Adds κ^{++}-many κ-Cohen sets

Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2
Forcings that preserve large cardinals

An example: Making GCH fail at a measurable cardinal

Theorem

Suppose that κ is κ^{++}-hypermeasurable. Then in a forcing extension, κ is still measurable and $2^{\kappa} = \kappa^{++}$.

Theorem is due to Woodin; the proof below is due to Katie Thompson and myself.

Step 1. Choose a forcing to make GCH fail at kappa.

Obvious choice: Cohen(κ, κ^{++})

Adds κ^{++}-many κ-Cohen sets

Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2

Better choice: Sacks(κ, κ^{++})

Adds κ^{++}-many κ-Sacks subsets of κ (defined later)
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):

Suppose that $C \subseteq \kappa$ is κ-Cohen generic.

Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$.

Need to find C^* which is $\kappa(\kappa)$-Cohen generic over M and extends C, i.e., such that $C = C^* \cap \kappa$.

Impossible! C does not belong to M!

Need the forcing to lift C^* to be defined not in M but in a model that already has C.

Solution: Force not just at κ, but at all inaccessible $\alpha \leq \kappa$, via an iteration $P = P(\alpha_0) \ast P(\alpha_1) \ast \cdots \ast P(\kappa)$ where $P(\alpha)$ denotes α-Cohen forcing.
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):
Suppose that $C \subseteq \kappa$ is κ-Cohen generic
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):
Suppose that $C \subseteq \kappa$ is κ-Cohen generic
Want to lift $j : V \to M$ to $j^* : V[C] \to M[C^*]$
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):
Suppose that $C \subseteq \kappa$ is κ-Cohen generic
Want to lift $j : V \rightarrow M$ to $j^* : V[C] \rightarrow M[C^*]$
Need to find C^* which is $j(\kappa)$-Cohen generic over M and “extends” C, i.e., such that $C = C^* \cap \kappa$
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):
Suppose that $C \subseteq \kappa$ is κ-Cohen generic
Want to lift $j : V \rightarrow M$ to $j^* : V[C] \rightarrow M[C^*]$
Need to find C^* which is $j(\kappa)$-Cohen generic over M and “extends” C, i.e., such that $C = C^* \cap \kappa$
Impossible! C does not belong to M!
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):

Suppose that $C \subseteq \kappa$ is κ-Cohen generic

Want to lift $j : V \to M$ to $j^* : V[C] \to M[C^*]$

Need to find C^* which is $j(\kappa)$-Cohen generic over M and “extends” C, i.e., such that $C = C^* \cap \kappa$

Impossible! C does not belong to M!

Need the forcing to add C^* to be defined not in M but in a model that already has C
Forcings that preserve large cardinals

Step 2: Prepare below κ

Here is the problem (illustrated using just κ-Cohen forcing):
Suppose that $C \subseteq \kappa$ is κ-Cohen generic
Want to lift $j : V \rightarrow M$ to $j^* : V[C] \rightarrow M[C^*]$
Need to find C^* which is $j(\kappa)$-Cohen generic over M and “extends” C, i.e., such that $C = C^* \cap \kappa$
Impossible! C does not belong to M!
Need the forcing to add C^* to be defined not in M but in a model that already has C

Solution: Force not just at κ, but at all inaccessible $\alpha \leq \kappa$, via an iteration

$$P = P(\alpha_0) \ast P(\alpha_1) \ast \cdots \ast P(\kappa)$$

where $P(\alpha)$ denotes α-Cohen forcing.
Let $C(\alpha_0) \ast C(\alpha_1) \ast \cdots \ast C(\kappa)$ denote the P-generic
Forcings that preserve large cardinals

Now we want to lift \(j : V \to M \) to

\[
j^* : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots \ast C(\kappa)] \to M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots \ast C^*(j(\kappa))]\]

where the \(\beta_i \)'s are the inaccessibles of \(M \) between \(\kappa \) and \(j(\kappa) \).
Forcings that preserve large cardinals

Now we want to lift $j : V \rightarrow M$ to

$$j^* : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots \ast C(\kappa)] \rightarrow$$

$$M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots \ast C^*(j(\kappa))]$$

where the β_i’s are the inaccessibles of M between κ and $j(\kappa)$.

To find the C^*’s:

Set $C^*(\alpha) = C(\alpha)$ for $\alpha < \kappa$
Forcings that preserve large cardinals

Now we want to lift $j : V \rightarrow M$ to

$$j^* : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots \ast C(\kappa)] \rightarrow \ M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots \ast C^*(j(\kappa))]$$

where the β_i’s are the inaccessibles of M between κ and $j(\kappa)$.

To find the C^*’s:

Set $C^*(\alpha) = C(\alpha)$ for $\alpha < \kappa$
Set $C^*(\kappa) = C(\kappa)$
Forcings that preserve large cardinals

Now we want to lift \(j : V \rightarrow M \) to
\[
\begin{align*}
 j^* : V[C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)] & \rightarrow \\
 M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))] & \\
\end{align*}
\]
where the \(\beta_i \)'s are the inaccessibles of \(M \) between \(\kappa \) and \(j(\kappa) \).

To find the \(C^* \)'s:

Set \(C^*(\alpha) = C(\alpha) \) for \(\alpha < \kappa \)

Set \(C^*(\kappa) = C(\kappa) \)

Take \(\langle C^*(\beta) \mid \kappa < \beta < j(\kappa) \rangle \) to be any generic (they exist)
Forcings that preserve large cardinals

Now we want to lift $j : V \to M$ to

$$j^* : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots \ast C(\kappa)] \to M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots \ast C^*(j(\kappa))]$$

where the β_i’s are the inaccessibles of M between κ and $j(\kappa)$.

To find the C^*’s:

Set $C^*(\alpha) = C(\alpha)$ for $\alpha < \kappa$

Set $C^*(\kappa) = C(\kappa)$

Take $\langle C^*(\beta) \mid \kappa < \beta < j(\kappa) \rangle$ to be any generic (they exist)

Last lift: Take $C^*(j(\kappa))$ to be any generic for $j(\kappa)$-Cohen forcing of

$$M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots]$$

containing the condition $C(\kappa) = C^*(\kappa)$ (such generics exist).
Forcings that preserve large cardinals

Step 3: Make this work with \(\kappa \)-Cohen forcing replaced by some forcing that kills the GCH at \(\kappa \)
Forcings that preserve large cardinals

Step 3: Make this work with κ-Cohen forcing replaced by some forcing that kills the GCH at κ

Here is the problem:
Forcings that preserve large cardinals

Step 3: Make this work with κ-Cohen forcing replaced by some forcing that kills the GCH at κ

Here is the problem:

For inaccessible $\alpha \leq \kappa$ replace α-Cohen by $\text{Cohen}(\alpha, \alpha^{++})$
Forcings that preserve large cardinals

Step 3: Make this work with κ-Cohen forcing replaced by some forcing that kills the GCH at κ

Here is the problem:

For inaccessible $\alpha \leq \kappa$ replace α-Cohen by Cohen(α, α^{++})

All goes well until the last lift: we can choose $C^*(\gamma)$ for all M-inaccessible $\gamma < j(\kappa)$ and lift $j : V \rightarrow M$ to $j' : V[C(\alpha_0) * C(\alpha_1) * \cdots] \rightarrow M[C^*(\alpha_0) * C^*(\alpha_1) * \cdots * C^*(\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots]$
Forcings that preserve large cardinals

Step 3: Make this work with κ-Cohen forcing replaced by some forcing that kills the GCH at κ

Here is the problem:

For inaccessible $\alpha \leq \kappa$ replace α-Cohen by Cohen(α, α^{++})

All goes well until the last lift: we can choose $C^*(\gamma)$ for all M-inaccessible $\gamma < j(\kappa)$ and lift $j : V \to M$ to $j' : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots] \to M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots]$

We then need to find a generic for the Cohen($j(\kappa), j(\kappa^{++})$)-forcing of $M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots]$ which contains $j'[C(\kappa)]$.
Forcings that preserve large cardinals

Step 3: Make this work with κ-Cohen forcing replaced by some forcing that kills the GCH at κ

Here is the problem:

For inaccessible $\alpha \leq \kappa$ replace α-Cohen by Cohen(α, α^{++})

All goes well until the last lift: we can choose $C^*(\gamma)$ for all M-inaccessible $\gamma < j(\kappa)$ and lift $j : V \rightarrow M$ to $j' : V[C(\alpha_0) \ast C(\alpha_1) \ast \cdots] \rightarrow M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots]$

We then need to find a generic for the Cohen$(j(\kappa), j(\kappa^{++}))$-forcing of $M[C^*(\alpha_0) \ast C^*(\alpha_1) \ast \cdots \ast C^*(\kappa) \ast C^*(\beta_0) \ast C^*(\beta_1) \ast \cdots]$

which contains $j'[C(\kappa)]$.

But Cohen$(j(\kappa), j(\kappa^{++}))$ is a very big forcing (it may have no generic; we may have to force one!) and $j'[C(\kappa)]$ is a very complicated set of conditions in this forcing (it is not easy to force a generic that contains it!)
Forcings that preserve large cardinals

Here is the solution: Use Sacks(κ, κ^{++}) instead of Cohen(κ, κ^{++})
Forcings that preserve large cardinals

Here is the solution: Use Sacks(κ, κ^{++}) instead of Cohen(κ, κ^{++})
Then we don’t have to build a generic $S^*(j(\kappa))$ for
Sacks$(j(\kappa), j(\kappa^{++}))$ because $j'[S(\kappa)]$ builds one for us!
Forcings that preserve large cardinals

Here is the solution: Use $\text{Sacks}(\kappa, \kappa^{++})$ instead of $\text{Cohen}(\kappa, \kappa^{++})$. Then we don’t have to build a generic $S^*(j(\kappa))$ for $\text{Sacks}(j(\kappa), j(\kappa^{++}))$ because $j'[S(\kappa)]$ builds one for us!

Illustrate with κ-Sacks: A condition is a perfect κ-tree with a closed unbounded set of splitting levels.
Forcings that preserve large cardinals

Here is the solution: Use Sacks(κ, κ^{++}) instead of Cohen(κ, κ^{++}). Then we don’t have to build a generic $S^*(j(\kappa))$ for Sacks($j(\kappa), j(\kappa^{++})$) because $j'[S(\kappa)]$ builds one for us!

Illustrate with κ-Sacks: A condition is a perfect κ-tree with a closed unbounded set of splitting levels. If G is generic then the intersection of the κ-trees in G gives us a function $g : \kappa \to 2$.
Forcings that preserve large cardinals

Here is the solution: Use Sacks(κ, κ^{++}) instead of Cohen(κ, κ^{++})
Then we don’t have to build a generic $S^*(j(\kappa))$ for
Sacks($j(\kappa), j(\kappa^{++})$) because $j'[S(\kappa)]$ builds one for us!

Illustrate with κ-Sacks: A condition is a perfect κ-tree with a closed
unbounded set of splitting levels. If G is generic then the
intersection of the κ-trees in G gives us a function $g : \kappa \to 2$.

Lemma

(Tuning Fork Lemma) Suppose that $j : V \to M$ has critical point κ
and g is κ-Sacks generic. Then in $V[g]$ there are exactly two
generics h_0, h_1 for the $j(\kappa)$-Sacks of M extending g; moreover
$h_0(\kappa) = 0$ and $h_1(\kappa) = 1$.
Forcings that preserve large cardinals

Here is the solution: Use Sacks\((\kappa, \kappa^{++})\) instead of Cohen\((\kappa, \kappa^{++})\)
Then we don’t have to build a generic \(S^*(j(\kappa))\) for
Sacks\((j(\kappa), j(\kappa^{++}))\) because \(j'[S(\kappa)]\) builds one for us!

Illustrate with \(\kappa\)-Sacks: A condition is a perfect \(\kappa\)-tree with a closed
unbounded set of splitting levels. If \(G\) is generic then the
intersection of the \(\kappa\)-trees in \(G\) gives us a function \(g : \kappa \to 2\).

Lemma

(Tuning Fork Lemma) Suppose that \(j : V \to M\) has critical point \(\kappa\)
and \(g\) is \(\kappa\)-Sacks generic. Then in \(V[g]\) there are exactly two
generics \(h_0, h_1\) for the \(j(\kappa)\)-Sacks of \(M\) extending \(g\); moreover
\(h_0(\kappa) = 0\) and \(h_1(\kappa) = 1\).

A similar result holds for Sacks\((\kappa, \kappa^{++})\), thereby solving the
problem of the “last lift”.
Forcings that preserve large cardinals

Some other applications:
Forcings that preserve large cardinals

Some other applications:

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++}. Then there is a cofinality-preserving forcing extension in which there are exactly α-many normal measures on κ.
Some other applications:

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++}. Then there is a cofinality-preserving forcing extension in which there are exactly α-many normal measures on κ.

(with Dobrinen) Assume GCH and let κ be κ^{++}-hypermeasurable. Then there is a forcing extension in which κ is still measurable and the tree property holds at κ^{++}.
Forcings that preserve large cardinals

Some other applications:

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++}. Then there is a cofinality-preserving forcing extension in which there are exactly α-many normal measures on κ.

(with Dobrinen) Assume GCH and let κ be κ^{++}-hypermeasurable. Then there is a forcing extension in which κ is still measurable and the tree property holds at κ^{++}.

(with Zdomskyy) Assume GCH and let κ be κ^{++}-hypermeasurable. Then there is a cofinality-preserving forcing extension in which κ is still measurable and the symmetric group on κ has cofinality κ^{++}.
Forcings which use large cardinals: The SCH

The Singular cardinal hypothesis (SCH):

If $2^{\text{cof}(\kappa)} < \kappa$ then $\text{cof}(\kappa) = \kappa +$. SCH \Rightarrow GCH holds at singular strong limit cardinals

Theorem (Prikry) Suppose that κ is measurable and the GCH fails at κ. Then in a forcing extension, κ is still a strong limit cardinal where the GCH fails, but now κ has cofinality ω. In particular, the SCH fails in this forcing extension.

Prikry forcing: A forcing that preserves cardinals, adds no new bounded subsets of κ but adds an ω-sequence cofinal in κ.
Forcings which use large cardinals: The SCH

Singular cardinal hypothesis (SCH):
If $2^{\text{cof}(\kappa)} < \kappa$ then $\kappa^{\text{cof}(\kappa)} = \kappa^+$
Forcings which use large cardinals: The SCH

Singular cardinal hypothesis (SCH):
If $2^\text{cof}(\kappa) < \kappa$ then $\kappa^{\text{cof}(\kappa)} = \kappa^+$

SCH \Rightarrow GCH holds at singular strong limit cardinals
Forcings which use large cardinals: The SCH

Singular cardinal hypothesis (SCH):
If $2^{\text{cof}(\kappa)} < \kappa$ then $\kappa^{\text{cof}(\kappa)} = \kappa^+$

SCH \Rightarrow GCH holds at singular strong limit cardinals

Theorem

(Prikry) Suppose that κ is measurable and the GCH fails at κ. Then in a forcing extension, κ is still a strong limit cardinal where the GCH fails, but now κ has cofinality ω. In particular, the SCH fails in this forcing extension.
Forcings which use large cardinals: The SCH

Singular cardinal hypothesis (SCH):
If \(2^{\text{cof}(\kappa)} < \kappa\) then \(\kappa^{\text{cof}(\kappa)} = \kappa^+\)

SCH \Rightarrow GCH holds at singular strong limit cardinals

Theorem

(Prikry) Suppose that \(\kappa\) is measurable and the GCH fails at \(\kappa\). Then in a forcing extension, \(\kappa\) is still a strong limit cardinal where the GCH fails, but now \(\kappa\) has cofinality \(\omega\). In particular, the SCH fails in this forcing extension.

Prikry forcing: A forcing that preserves cardinals, adds no new bounded subsets of \(\kappa\) but adds an \(\omega\)-sequence cofinal in \(\kappa\).
Forcings which use large cardinals: The SCH

Conditions in Prikry forcing:

Fix a normal measure U on κ. A condition is a pair (s, A) where s is a finite subset of κ and A belongs to U.
Forcings which use large cardinals: The SCH

Conditions in Prikry forcing:
Fix a normal measure U on κ. A condition is a pair (s, A) where s is a finite subset of κ and A belongs to U.

Extension in Prikry forcing:
(t, B) extends (s, A) iff
t end-extends s
B is a subset of A
t \setminus s$ is contained in A
Forcings which use large cardinals: The SCH

Conditions in Prikry forcing:
Fix a normal measure U on κ. A condition is a pair (s, A) where s is a finite subset of κ and A belongs to U.

Extension in Prikry forcing:
(t, B) extends (s, A) iff
t end-extends s
B is a subset of A
$t \setminus s$ is contained in A

Facts: (a) If G is P-generic then $\bigcup\{s \mid (s, A) \in G \text{ for some } A\}$ is an ω-sequence cofinal in κ.
Forcings which use large cardinals: The SCH

Conditions in Prikry forcing:
Fix a normal measure U on κ. A condition is a pair (s, A) where s is a finite subset of κ and A belongs to U.

Extension in Prikry forcing:
(t, B) extends (s, A) iff
- t end-extends s
- B is a subset of A
- $t \setminus s$ is contained in A

Facts: (a) If G is P-generic then $\bigcup\{s \mid (s, A) \in G \text{ for some } A\}$ is an ω-sequence cofinal in κ.
(b) P is κ^+-cc: If $(s, A), (t, B)$ are conditions and $s = t$ then (s, A) and (t, B) are compatible.
The main lemma about Prikry forcing is the following. We say that \((t, B)\) is a direct extension of \((s, A)\) iff \(s = t\) and \(B\) is a subset of \(A\).

Lemma (The Prikry property)

For \(\sigma\) a sentence of the forcing language, every condition has a direct extension which decides \(\sigma\) (i.e., either forces \(\sigma\) or \(\sim \sigma\)).
Forcings which use large cardinals: The SCH

<table>
<thead>
<tr>
<th>Lemma (The Prikry property)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).</td>
</tr>
</tbody>
</table>
Forcings which use large cardinals: The SCH

Lemma (The Prikry property)

For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).

Proof. Suppose that (s, A) is a condition and define $h : [A]^{<\omega} \to 2$ as follows:

$h(t) = 1$ iff $(s \cup t, B) \models \sigma$ for some B
$h(t) = 0$ otherwise.
For forcings which use large cardinals: The SCH

Lemma (The Prikry property)

For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).

Proof. Suppose that (s, A) is a condition and define $h : [A]^{<\omega} \rightarrow 2$ as follows:

- $h(t) = 1$ iff $(s \cup t, B) \models \sigma$ for some B
- $h(t) = 0$ otherwise.

As U is normal there is $A^* \in U$ which is homogeneous for h: For each n and $t_1, t_2 \in [A^*]^n$, $h(t_1) = h(t_2)$.
Forcings which use large cardinals: The SCH

Lemma (The Prikry property)

For σ a sentence of the forcing language, every condition has a direct extension which decides σ (i.e., either forces σ or $\sim \sigma$).

Proof. Suppose that (s, A) is a condition and define $h : [A]^{<\omega} \to 2$ as follows:

$h(t) = 1$ iff $(s \cup t, B) \vdash \sigma$ for some B
$h(t) = 0$ otherwise.

As U is normal there is $A^* \in U$ which is homogeneous for h: For each n and $t_1, t_2 \in [A^*]^n$, $h(t_1) = h(t_2)$. Then (s, A^*) decides σ: Otherwise there would be $(s \cup t_1, B_1), (s \cup t_2, B_2)$ extending (s, A^*) which force $\sigma, \sim \sigma$, respectively. We can assume that for some n, both t_1 and t_2 belong to $[A^*]^n$. But then $h(t_1) = 0, h(t_2) = 1$, contradicting homogeneity. \square
Corollary: P does not add new bounded subsets of κ.

Proof. Suppose $(s, A) \models \dot{a}$ is a subset of λ, where λ is less than κ. Set $(s, A_0) = (s, A)$ and using the Prirky property choose a direct extension (s, A_1) of (s, A_0) which decides “$0 \in \dot{a}$”. Then choose a direct extension (s, A_2) of (s, A_1) which decides “$1 \in \dot{a}$”, etc. After λ steps we have a direct extension (s, A_λ) of (s, A) which decides which ordinals less than λ belong to \dot{a}, and therefore forces \dot{a} to belong to the ground model. □
Corollary: P does not add new bounded subsets of κ.

Proof. Suppose $(s, A) \models \dot{a}$ is a subset of λ, where λ is less than κ. Set $(s, A_0) = (s, A)$ and using the Prirky property choose a direct extension (s, A_1) of (s, A_0) which decides “$0 \in \dot{a}$”. Then choose a direct extension (s, A_2) of (s, A_1) which decides “$1 \in \dot{a}$”, etc. After λ steps we have a direct extension (s, A_λ) of (s, A) which decides which ordinals less than λ belong to \dot{a}, and therefore forces \dot{a} to belong to the ground model. □

In summary: If G is P-generic then κ has cofinality ω in $V[G]$ and $V, V[G]$ have the same cardinals and bounded subsets of κ. In particular, if GCH fails at κ in V, then in $V[G]$, κ is a singular strong limit cardinal where the GCH fails.
Forcings which use large cardinals: The SCH

An improvement: Model where ℵ_ω is strong limit and the GCH fails at ℵ_ω.
Forcings which use large cardinals: The SCH

An improvement: Model where \aleph_ω is strong limit and the GCH fails at \aleph_ω

Theorem

(Magidor) Suppose that κ is measurable. Then there is a forcing extension in which κ equals \aleph_ω.

An improvement: Model where \aleph_ω is strong limit and the GCH fails at \aleph_ω

Theorem

(Magidor) Suppose that κ is measurable. Then there is a forcing extension in which κ equals \aleph_ω.

For the proof, mix Prikry forcing with Lévy collapses:
Forcings which use large cardinals: The SCH

An improvement: Model where \aleph_ω is strong limit and the GCH fails at \aleph_ω

Theorem

(Magidor) Suppose that κ is measurable. Then there is a forcing extension in which κ equals \aleph_ω.

For the proof, mix Prikry forcing with Lévy collapses:

Suppose that $\alpha < \beta$ are regular. Then Lévy(α, β) is a forcing that makes β into α^+ and otherwise preserves cardinals:

$p \in \text{Lévy}(\alpha, \beta)$ iff p is partial function of size $< \alpha$ from $\alpha \times \beta$ to β such that $p(\alpha_0, \beta_0) < \beta_0$ for each (α_0, β_0) in the domain of p.
Collapsing Prikry forcing: 1st try

Fix a normal measure U on κ. A condition is of the form

$((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A)$

where:

- $\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible
- p_i belongs to $\text{Lévy}(\alpha_i, \alpha_{i+1})$ for $i < n - 1$
- p_{n-1} belongs to $\text{Lévy}(\alpha_{n-1}, \kappa)$
- A belongs to U
Collapsing Prikry forcing: 1st try

Fix a normal measure U on κ. A condition is of the form $((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A)$ where:

- $\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible
- p_i belongs to $\text{Lévy}(\alpha_i, \alpha_{i+1})$ for $i < n - 1$
- p_{n-1} belongs to $\text{Lévy}(\alpha_{n-1}, \kappa)$
- A belongs to U

To extend: Strengthen the p_i’s, increase n, shrink A and take the new α’s from the old A
Collapsing Prikry forcing: 1st try

Fix a normal measure U on κ. A condition is of the form $((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A)$ where:

$\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible

p_i belongs to $\text{Lévy}(\alpha_i, \alpha_{i+1})$ for $i < n - 1$

p_{n-1} belongs to $\text{Lévy}(\alpha_{n-1}, \kappa)$

A belongs to U

To extend: Strengthen the p_i’s, increase n, shrink A and take the new α’s from the old A

Problem: This collapses κ to ω (the p_i’s are running wild!)

Solution: Control the p_i’s on a measure one set
Collapsing Prikry forcing: 2nd try
Let $j : V \rightarrow M$ witness that κ is measurable and choose U to be the normal measure $\{A \mid \kappa \in j(A)\}$
Collapsing Prikry forcing: 2nd try
Let $j : V \rightarrow M$ witness that κ is measurable and choose U to be the normal measure $\{ A \mid \kappa \in j(A) \}$

Guiding generic: Choose G in V to be generic over M for Lévy$(\kappa^+, j(\kappa))$ of M (this is possible)
Collapsing Prikry forcing: 2nd try
Let $j : V \to M$ witness that κ is measurable and choose U to be the normal measure $\{A \mid \kappa \in j(A)\}$

Guiding generic: Choose G in V to be generic over M for $\text{Lévy}(\kappa^+, j(\kappa))$ of M (this is possible)
Now define a condition to be of the form
$((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)$ where:
Collapsing Prikry forcing: 2nd try
Let $j : V \to M$ witness that κ is measurable and choose U to be the normal measure $\{A \mid \kappa \in j(A)\}$

Guiding generic: Choose G in V to be generic over M for $\text{Lévy}(\kappa^+, j(\kappa))$ of M (this is possible)

Now define a condition to be of the form
$((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)$ where:
$\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible
Forcings which use large cardinals: The SCH

Collapsing Prikry forcing: 2nd try
Let \(j : V \rightarrow M \) witness that \(\kappa \) is measurable and choose \(U \) to be the normal measure \(\{ A \mid \kappa \in j(A) \} \)

Guiding generic: Choose \(G \) in \(V \) to be generic over \(M \) for \(\text{Lévy} (\kappa^+, j(\kappa)) \) of \(M \) (this is possible)
Now define a condition to be of the form
\(((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \) where:
\(\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa \) are inaccessible
\(p_i \) belongs to \(\text{Lévy} (\alpha_i^+, \alpha_{i+1}) \) for \(i < n - 1 \)
Collapsing Prikry forcing: 2nd try
Let \(j : V \to M \) witness that \(\kappa \) is measurable and choose \(U \) to be the normal measure \(\{ A \mid \kappa \in j(A) \} \)

Guiding generic: Choose \(G \) in \(V \) to be generic over \(M \) for \(\text{Lévy}(\kappa^+, j(\kappa)) \) of \(M \) (this is possible)
Now define a condition to be of the form
\[(\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)\]
where:
\(\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa \) are inaccessible
\(p_i \) belongs to \(\text{Lévy}(\alpha_i^+, \alpha_{i+1}) \) for \(i < n - 1 \)
\(p_{n-1} \) belongs to \(\text{Lévy}(\alpha_{n-1}^+, \kappa) \)
Forcings which use large cardinals: The SCH

Collapsing Prikry forcing: 2nd try
Let \(j : V \rightarrow M \) witness that \(\kappa \) is measurable and choose \(U \) to be the normal measure \(\{ A \mid \kappa \in j(A) \} \)

Guiding generic: Choose \(G \) in \(V \) to be generic over \(M \) for \(\text{Lévy}(\kappa^+, j(\kappa)) \) of \(M \) (this is possible)

Now define a condition to be of the form
\[(\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)\]
where:
\(\alpha_0 \prec \alpha_1 \prec \cdots \prec \alpha_{n-1} \prec \kappa\) are inaccessible
\(p_i\) belongs to \(\text{Lévy}(\alpha_i^+, \alpha_{i+1}) \) for \(i < n - 1 \)
\(p_{n-1}\) belongs to \(\text{Lévy}(\alpha_{n-1}^+, \kappa) \)
\(A\) belongs to \(U \)
Forcings which use large cardinals: The SCH

Collapsing Prikry forcing: 2nd try
Let $j : V \to M$ witness that κ is measurable and choose U to be the normal measure $\{A \mid \kappa \in j(A)\}$

Guiding generic: Choose G in V to be generic over M for $\text{Lévy}(\kappa^+, j(\kappa))$ of M (this is possible)
Now define a condition to be of the form
$((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)$ where:

- $\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$ are inaccessible
- p_i belongs to $\text{Lévy}(\alpha_i^+, \alpha_{i+1})$ for $i < n - 1$
- p_{n-1} belongs to $\text{Lévy}(\alpha_{n-1}^+, \kappa)$
- A belongs to U
- F is a function with domain A such that $F(\alpha)$ belongs to $\text{Lévy}(\alpha^+, \kappa)$ for each inaccessible α in A
Forcings which use large cardinals: The SCH

Collapsing Prikry forcing: 2nd try
Let \(j : V \rightarrow M \) witness that \(\kappa \) is measurable and choose \(U \) to be the normal measure \(\{ A \mid \kappa \in j(A) \} \)

Guiding generic: Choose \(G \) in \(V \) to be generic over \(M \) for \(\text{Lévy}(\kappa^+, j(\kappa)) \) of \(M \) (this is possible)
Now define a condition to be of the form
\[
((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F)
\]
where:
- \(\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa \) are inaccessible
- \(p_i \) belongs to \(\text{Lévy}(\alpha_i^+, \alpha_{i+1}) \) for \(i < n - 1 \)
- \(p_{n-1} \) belongs to \(\text{Lévy}(\alpha_{n-1}^+, \kappa) \)
- \(A \) belongs to \(U \)
- \(F \) is a function with domain \(A \) such that \(F(\alpha) \) belongs to \(\text{Lévy}(\alpha^+, \kappa) \) for each inaccessible \(\alpha \) in \(A \)
- \(j(F)(\kappa) \) belongs to \(G \)
Forcings which use large cardinals: The SCH

An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^*-1}^*, p_{n^*-1}^*), A^*, F^*) \]
where:
Forcings which use large cardinals: The SCH

An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^*-1}^*, p_{n^*-1}^*), A^*, F^*) \] where:

- \(n^* \) is at least \(n \)
An extension of
\(p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \)
is of the form
\(p^* = ((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^* - 1}^*, p_{n^* - 1}^*), A^*, F^*) \) where:

- \(n^* \) is at least \(n \)
- \(\alpha_i^* = \alpha_i \) and \(p_i^* \) extends \(p_i \) for \(i < n \)
Forcings which use large cardinals: The SCH

An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^*-1}^*, p_{n^*-1}^*), A^*, F^*) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha_i^* = \alpha_i \) and \(p_i^* \) extends \(p_i \) for \(i < n \)
- \(p_j^* \) extends \(F(\alpha_j^*) \) for \(j \geq n \)
An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha^*_0, p^*_0), (\alpha^*_1, p^*_1), \ldots, (\alpha^*_{n-1}, p^*_{n-1}), A^*, F^*) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha^*_i = \alpha_i \) and \(p^*_i \) extends \(p_i \) for \(i < n \)
- \(p^*_j \) extends \(F(\alpha^*_j) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
An extension of
\[p = \left((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F \right) \]
is of the form
\[p^* = \left((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^*-1}^*, p_{n^*-1}^*), A^*, F^* \right) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha_i^* = \alpha_i \) and \(p_i^* \) extends \(p_i \) for \(i < n \)
- \(p_j^* \) extends \(F(\alpha_j^*) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
- \(F^*(\alpha) \) extends \(F(\alpha) \) for each \(\alpha \in A^* \)
Forcings which use large cardinals: The SCH

An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha^*_0, p^*_0), (\alpha^*_1, p^*_1), \ldots, (\alpha^*_{n-1}, p^*_n), A^*, F^*) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha^*_i = \alpha_i \) and \(p^*_i \) extends \(p_i \) for \(i < n \)
- \(p^*_j \) extends \(F(\alpha^*_j) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
- \(F^*(\alpha) \) extends \(F(\alpha) \) for each \(\alpha \in A^* \)
- \(p^* \) is a direct extension of \(p \) if in addition \(n^* = n \)
Forcings which use large cardinals: The SCH

An extension of
\[p = (((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = (((\alpha_0^*, p_0^*), (\alpha_1^*, p_1^*), \ldots, (\alpha_{n^*-1}, p_{n^*-1}^*), A^*, F^*) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha_i^* = \alpha_i \) and \(p_i^* \) extends \(p_i \) for \(i < n \)
- \(p_j^* \) extends \(F(\alpha_j^*) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
- \(F^*(\alpha) \) extends \(F(\alpha) \) for each \(\alpha \in A^* \)

\(p^* \) is a direct extension of \(p \) if in addition \(n^* = n \)

A generic produces a Prikry sequence \(\alpha_0 < \alpha_1 < \cdots \) in \(\kappa \) together with Lévy collapses \(g_0, g_1, \ldots \) where \(g_i \) ensures \(\alpha_{i+1} = \alpha_i^{++} \). So after collapsing \(\alpha_0 \), we see that \(\kappa \) is at most \(\aleph_\omega \).
An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha^*_0, p^*_0), (\alpha^*_1, p^*_1), \ldots, (\alpha^*_{n-1}, p^*_{n-1}), A^*, F^*) \] where:

- \(n^* \) is at least \(n \)
- \(\alpha^*_i = \alpha_i \) and \(p^*_i \) extends \(p_i \) for \(i < n \)
- \(p^*_j \) extends \(F(\alpha^*_j) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
- \(F^*(\alpha) \) extends \(F(\alpha) \) for each \(\alpha \in A^* \)
- \(p^* \) is a direct extension of \(p \) if in addition \(n^* = n \)

A generic produces a Prikry sequence \(\alpha_0 < \alpha_1 < \cdots \) in \(\kappa \) together with Lévy collapses \(g_0, g_1, \ldots \) where \(g_i \) ensures \(\alpha_{i+1} = \alpha_i^{++} \). So after collapsing \(\alpha_0 \), we see that \(\kappa \) is at most \(\aleph_\omega \). The forcing is \(\kappa^+-cc \).
Forcings which use large cardinals: The SCH

An extension of
\[p = ((\alpha_0, p_0), (\alpha_1, p_1), \ldots, (\alpha_{n-1}, p_{n-1}), A, F) \]
is of the form
\[p^* = ((\alpha^*_0, p^*_0), (\alpha^*_1, p^*_1), \ldots, (\alpha^*_n, p^*_n), A^*, F^*) \]
where:
- \(n^* \) is at least \(n \)
- \(\alpha^*_i = \alpha_i \) and \(p^*_i \) extends \(p_i \) for \(i < n \)
- \(p^*_j \) extends \(F(\alpha^*_j) \) for \(j \geq n \)
- \(A^* \) is contained in \(A \)
- \(F^*(\alpha) \) extends \(F(\alpha) \) for each \(\alpha \in A^* \)
- \(p^* \) is a direct extension of \(p \) if in addition \(n^* = n \)

A generic produces a Prikry sequence \(\alpha_0 < \alpha_1 < \cdots \) in \(\kappa \) together with Lévy collapses \(g_0, g_1, \ldots \) where \(g_i \) ensures \(\alpha_{i+1} = \alpha^{++}_i \). So after collapsing \(\alpha_0 \), we see that \(\kappa \) is at most \(\aleph_\omega \).

The forcing is \(\kappa^+-cc \). But why isn’t \(\kappa \) collapsed?
Forcings which use large cardinals: The SCH

The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ.
The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ.

Using this, one gets: Any bounded subset of κ belongs to $V[g_0, g_1, \ldots, g_n]$ for some n, and therefore κ remains a cardinal.
The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ.

Using this, one gets: Any bounded subset of κ belongs to $V[g_0, g_1, \ldots, g_n]$ for some n, and therefore κ remains a cardinal.

Summary: Prikry Collapse forcing makes κ into \aleph_ω and preserves cardinals above κ.

Now start with κ measurable and GCH failing at κ.
The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ.

Using this, one gets: Any bounded subset of κ belongs to $V[g_0, g_1, \ldots, g_n]$ for some n, and therefore κ remains a cardinal.

Summary: Prikry Collapse forcing makes κ into \aleph_ω and preserves cardinals above κ.

Now start with κ measurable and GCH failing at κ.
The Prikry property: For σ a sentence of the forcing language, every condition has a direct extension which decides σ.
Using this, one gets: Any bounded subset of κ belongs to $V[g_0, g_1, \ldots, g_n]$ for some n, and therefore κ remains a cardinal
Summary: Prikry Collapse forcing makes κ into \aleph_ω and preserves cardinals above κ.
Now start with κ measurable and GCH failing at κ.
Then Prikry Collapse forcing makes κ into \aleph_ω with \aleph_ω strong limit, GCH failing at \aleph_ω (Strong failure of the SCH)
Open Questions

1. Preserving large cardinals

Consider various cardinal characteristics of the continuum (almost-disjointness number, bounding number, dominating number, splitting number, ...)

How do these behave at a large cardinal?

Is it consistent that a strongly compact cardinal have a unique normal measure?

Is it consistent with a supercompact cardinal for $H(\kappa^+)$ to have a denable well-ordering for every uncountable κ?
Open Questions

1. Preserving large cardinals
Consider various cardinal characteristics of the continuum (almost-disjointness number, bounding number, dominating number, splitting number, ...)
How do these behave at a large cardinal?
Open Questions

1. Preserving large cardinals
Consider various cardinal characteristics of the continuum (almost-disjointness number, bounding number, dominating number, splitting number, ...)
How do these behave at a large cardinal?
Is it consistent that a strongly compact cardinal have a unique normal measure?
1. Preserving large cardinals
Consider various cardinal characteristics of the continuum
(almost-disjointness number, bounding number, dominating
number, splitting number, ...)
How do these behave at a large cardinal?
Is it consistent that a strongly compact cardinal have a unique
normal measure?
Is it consistent with a supercompact cardinal for \(H(\kappa^+) \) to have a
definable wellordering for every uncountable \(\kappa \)?
Open Questions

2. Using large cardinals
 (SCH-type problems): What are the possibilities for the function $n \mapsto 2^{\aleph_n}$ for $n \leq \omega$?
Open Questions

2. Using large cardinals
(SCH-type problems): What are the possibilities for the function
\[n \mapsto 2^{\kappa^n} \text{ for } n \leq \omega? \]
Is it consistent that there is no \(\kappa \)-Aronszajn tree for any regular cardinal \(\kappa > \omega_1 \)?
2. Using large cardinals
(SCH-type problems): What are the possibilities for the function
\(n \mapsto 2^{\kappa_n} \) for \(n \leq \omega \)?
Is it consistent that there is no \(\kappa \)-Aronszajn tree for any regular cardinal \(\kappa > \omega_1 \)?
Is it consistent to have stationary reflection at the successor of each singular cardinal?
2. Using large cardinals
(SCH-type problems): What are the possibilities for the function \(n \mapsto 2^{\mathcal{A}_n} \) for \(n \leq \omega \)?

Is it consistent that there is no \(\kappa \)-Aronszajn tree for any regular cardinal \(\kappa > \omega_1 \)?

Is it consistent to have stationary reflection at the successor of each singular cardinal?

Can the nonstationary ideal on \(\omega_1 \) be saturated with CH?
Open Questions

2. Using large cardinals
(SCH-type problems): What are the possibilities for the function
\(n \mapsto 2^{\kappa n} \) for \(n \leq \omega \)?
Is it consistent that there is no \(\kappa \)-Aronszajn tree for any regular cardinal \(\kappa > \omega_1 \)?
Is it consistent to have stationary reflection at the successor of each singular cardinal?
Can the nonstationary ideal on \(\omega_1 \) be saturated with CH?
Can \(\mathfrak{N}_\omega \) be Jonsson?